vlm_analyze.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import os
  3. import time
  4. from loguru import logger
  5. from .custom_logits_processors import enable_custom_logits_processors
  6. from .model_output_to_middle_json import result_to_middle_json
  7. from ...data.data_reader_writer import DataWriter
  8. from mineru.utils.pdf_image_tools import load_images_from_pdf
  9. from ...utils.config_reader import get_device
  10. from ...utils.enum_class import ImageType
  11. from ...utils.model_utils import get_vram
  12. from ...utils.models_download_utils import auto_download_and_get_model_root_path
  13. from mineru_vl_utils import MinerUClient
  14. from packaging import version
  15. class ModelSingleton:
  16. _instance = None
  17. _models = {}
  18. def __new__(cls, *args, **kwargs):
  19. if cls._instance is None:
  20. cls._instance = super().__new__(cls)
  21. return cls._instance
  22. def get_model(
  23. self,
  24. backend: str,
  25. model_path: str | None,
  26. server_url: str | None,
  27. **kwargs,
  28. ) -> MinerUClient:
  29. key = (backend, model_path, server_url)
  30. if key not in self._models:
  31. start_time = time.time()
  32. model = None
  33. processor = None
  34. vllm_llm = None
  35. vllm_async_llm = None
  36. batch_size = 0
  37. if backend in ['transformers', 'vllm-engine', "vllm-async-engine"] and not model_path:
  38. model_path = auto_download_and_get_model_root_path("/","vlm")
  39. if backend == "transformers":
  40. try:
  41. from transformers import (
  42. AutoProcessor,
  43. Qwen2VLForConditionalGeneration,
  44. )
  45. from transformers import __version__ as transformers_version
  46. except ImportError:
  47. raise ImportError("Please install transformers to use the transformers backend.")
  48. if version.parse(transformers_version) >= version.parse("4.56.0"):
  49. dtype_key = "dtype"
  50. else:
  51. dtype_key = "torch_dtype"
  52. device = get_device()
  53. model = Qwen2VLForConditionalGeneration.from_pretrained(
  54. model_path,
  55. device_map={"": device},
  56. **{dtype_key: "auto"}, # type: ignore
  57. )
  58. processor = AutoProcessor.from_pretrained(
  59. model_path,
  60. use_fast=True,
  61. )
  62. try:
  63. vram = get_vram(device)
  64. if vram is not None:
  65. gpu_memory = int(os.getenv('MINERU_VIRTUAL_VRAM_SIZE', round(vram)))
  66. if gpu_memory >= 16:
  67. batch_size = 8
  68. elif gpu_memory >= 8:
  69. batch_size = 4
  70. else:
  71. batch_size = 1
  72. logger.info(f'gpu_memory: {gpu_memory} GB, batch_size: {batch_size}')
  73. else:
  74. # Default batch_ratio when VRAM can't be determined
  75. batch_size = 1
  76. logger.info(f'Could not determine GPU memory, using default batch_ratio: {batch_size}')
  77. except Exception as e:
  78. logger.warning(f'Error determining VRAM: {e}, using default batch_ratio: 1')
  79. batch_size = 1
  80. elif backend == "vllm-engine":
  81. try:
  82. import vllm
  83. from mineru_vl_utils import MinerULogitsProcessor
  84. except ImportError:
  85. raise ImportError("Please install vllm to use the vllm-engine backend.")
  86. if "gpu_memory_utilization" not in kwargs:
  87. kwargs["gpu_memory_utilization"] = 0.5
  88. if "model" not in kwargs:
  89. kwargs["model"] = model_path
  90. if enable_custom_logits_processors() and ("logits_processors" not in kwargs):
  91. kwargs["logits_processors"] = [MinerULogitsProcessor]
  92. # 使用kwargs为 vllm初始化参数
  93. vllm_llm = vllm.LLM(**kwargs)
  94. elif backend == "vllm-async-engine":
  95. try:
  96. from vllm.engine.arg_utils import AsyncEngineArgs
  97. from vllm.v1.engine.async_llm import AsyncLLM
  98. from mineru_vl_utils import MinerULogitsProcessor
  99. except ImportError:
  100. raise ImportError("Please install vllm to use the vllm-async-engine backend.")
  101. if "gpu_memory_utilization" not in kwargs:
  102. kwargs["gpu_memory_utilization"] = 0.5
  103. if "model" not in kwargs:
  104. kwargs["model"] = model_path
  105. if enable_custom_logits_processors() and ("logits_processors" not in kwargs):
  106. kwargs["logits_processors"] = [MinerULogitsProcessor]
  107. # 使用kwargs为 vllm初始化参数
  108. vllm_async_llm = AsyncLLM.from_engine_args(AsyncEngineArgs(**kwargs))
  109. self._models[key] = MinerUClient(
  110. backend=backend,
  111. model=model,
  112. processor=processor,
  113. vllm_llm=vllm_llm,
  114. vllm_async_llm=vllm_async_llm,
  115. server_url=server_url,
  116. batch_size=batch_size,
  117. )
  118. elapsed = round(time.time() - start_time, 2)
  119. logger.info(f"get {backend} predictor cost: {elapsed}s")
  120. return self._models[key]
  121. def doc_analyze(
  122. pdf_bytes,
  123. image_writer: DataWriter | None,
  124. predictor: MinerUClient | None = None,
  125. backend="transformers",
  126. model_path: str | None = None,
  127. server_url: str | None = None,
  128. **kwargs,
  129. ):
  130. if predictor is None:
  131. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  132. # load_images_start = time.time()
  133. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  134. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  135. # load_images_time = round(time.time() - load_images_start, 2)
  136. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  137. # infer_start = time.time()
  138. results = predictor.batch_two_step_extract(images=images_pil_list)
  139. # infer_time = round(time.time() - infer_start, 2)
  140. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  141. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  142. return middle_json, results
  143. async def aio_doc_analyze(
  144. pdf_bytes,
  145. image_writer: DataWriter | None,
  146. predictor: MinerUClient | None = None,
  147. backend="transformers",
  148. model_path: str | None = None,
  149. server_url: str | None = None,
  150. **kwargs,
  151. ):
  152. if predictor is None:
  153. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  154. # load_images_start = time.time()
  155. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  156. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  157. # load_images_time = round(time.time() - load_images_start, 2)
  158. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  159. # infer_start = time.time()
  160. results = await predictor.aio_batch_two_step_extract(images=images_pil_list)
  161. # infer_time = round(time.time() - infer_start, 2)
  162. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  163. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  164. return middle_json, results