pipeline_analyze.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. import os
  2. import time
  3. import numpy as np
  4. import torch
  5. from .model_init import MineruPipelineModel
  6. from .config_reader import get_local_models_dir, get_device, get_formula_config, get_table_recog_config
  7. from .model_json_to_middle_json import result_to_middle_json
  8. from ...data.data_reader_writer import DataWriter
  9. from ...utils.pdf_classify import classify
  10. from ...utils.pdf_image_tools import load_images_from_pdf
  11. from loguru import logger
  12. from ...utils.model_utils import get_vram, clean_memory
  13. os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 让mps可以fallback
  14. os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新
  15. class ModelSingleton:
  16. _instance = None
  17. _models = {}
  18. def __new__(cls, *args, **kwargs):
  19. if cls._instance is None:
  20. cls._instance = super().__new__(cls)
  21. return cls._instance
  22. def get_model(
  23. self,
  24. lang=None,
  25. formula_enable=None,
  26. table_enable=None,
  27. ):
  28. key = (lang, formula_enable, table_enable)
  29. if key not in self._models:
  30. self._models[key] = custom_model_init(
  31. lang=lang,
  32. formula_enable=formula_enable,
  33. table_enable=table_enable,
  34. )
  35. return self._models[key]
  36. def custom_model_init(
  37. lang=None,
  38. formula_enable=None,
  39. table_enable=None,
  40. ):
  41. model_init_start = time.time()
  42. # 从配置文件读取model-dir和device
  43. local_models_dir = get_local_models_dir()
  44. device = get_device()
  45. formula_config = get_formula_config()
  46. if formula_enable is not None:
  47. formula_config['enable'] = formula_enable
  48. table_config = get_table_recog_config()
  49. if table_enable is not None:
  50. table_config['enable'] = table_enable
  51. model_input = {
  52. 'models_dir': local_models_dir,
  53. 'device': device,
  54. 'table_config': table_config,
  55. 'formula_config': formula_config,
  56. 'lang': lang,
  57. }
  58. custom_model = MineruPipelineModel(**model_input)
  59. model_init_cost = time.time() - model_init_start
  60. logger.info(f'model init cost: {model_init_cost}')
  61. return custom_model
  62. def doc_analyze(
  63. pdf_bytes_list,
  64. lang_list,
  65. image_writer: DataWriter | None,
  66. parse_method: str = 'auto',
  67. formula_enable=None,
  68. table_enable=None,
  69. ):
  70. """
  71. 统一处理文档分析函数,根据输入参数类型决定处理单个数据集还是多个数据集
  72. Args:
  73. dataset_or_datasets: 单个Dataset对象或Dataset对象列表
  74. parse_method: 解析方法,'auto'/'ocr'/'txt'
  75. formula_enable: 是否启用公式识别
  76. table_enable: 是否启用表格识别
  77. Returns:
  78. 单个dataset时返回单个model_json,多个dataset时返回model_json列表
  79. """
  80. MIN_BATCH_INFERENCE_SIZE = int(os.environ.get('MINERU_MIN_BATCH_INFERENCE_SIZE', 100))
  81. # 收集所有页面信息
  82. all_pages_info = [] # 存储(dataset_index, page_index, img, ocr, lang, width, height)
  83. all_image_lists = []
  84. all_pdf_docs = []
  85. ocr_enabled_list = []
  86. for pdf_idx, pdf_bytes in enumerate(pdf_bytes_list):
  87. # 确定OCR设置
  88. _ocr = False
  89. if parse_method == 'auto':
  90. if classify(pdf_bytes) == 'ocr':
  91. _ocr = True
  92. elif parse_method == 'ocr':
  93. _ocr = True
  94. ocr_enabled_list[pdf_idx] = _ocr
  95. _lang = lang_list[pdf_idx]
  96. # 收集每个数据集中的页面
  97. images_list, pdf_doc = load_images_from_pdf(pdf_bytes)
  98. all_image_lists.append(images_list)
  99. all_pdf_docs.append(pdf_doc)
  100. for page_idx in range(len(images_list)):
  101. img_dict = images_list[page_idx]
  102. all_pages_info.append((
  103. pdf_idx, page_idx,
  104. img_dict['img_pil'], _ocr, _lang,
  105. ))
  106. # 准备批处理
  107. images_with_extra_info = [(info[2], info[3], info[4]) for info in all_pages_info]
  108. batch_size = MIN_BATCH_INFERENCE_SIZE
  109. batch_images = [
  110. images_with_extra_info[i:i + batch_size]
  111. for i in range(0, len(images_with_extra_info), batch_size)
  112. ]
  113. # 执行批处理
  114. results = []
  115. processed_images_count = 0
  116. for index, batch_image in enumerate(batch_images):
  117. processed_images_count += len(batch_image)
  118. logger.info(
  119. f'Batch {index + 1}/{len(batch_images)}: '
  120. f'{processed_images_count} pages/{len(images_with_extra_info)} pages'
  121. )
  122. batch_results = may_batch_image_analyze(batch_image, formula_enable, table_enable)
  123. results.extend(batch_results)
  124. # 构建返回结果
  125. infer_results = []
  126. for i, page_info in enumerate(all_pages_info):
  127. pdf_idx, page_idx, pil_img, _, _ = page_info
  128. result = results[i]
  129. page_info_dict = {'page_no': page_idx, 'width': pil_img.width, 'height': pil_img.height}
  130. page_dict = {'layout_dets': result, 'page_info': page_info_dict}
  131. infer_results[pdf_idx][page_idx] = page_dict
  132. middle_json_list = []
  133. for pdf_idx, model_list in enumerate(infer_results):
  134. images_list = all_image_lists[pdf_idx]
  135. pdf_doc = all_pdf_docs[pdf_idx]
  136. _lang = lang_list[pdf_idx]
  137. _ocr = ocr_enabled_list[pdf_idx]
  138. middle_json = result_to_middle_json(model_list, images_list, pdf_doc, image_writer, _lang, _ocr)
  139. middle_json_list.append(middle_json)
  140. return middle_json_list, infer_results
  141. def may_batch_image_analyze(
  142. images_with_extra_info: list[(np.ndarray, bool, str)],
  143. formula_enable=None,
  144. table_enable=None):
  145. # os.environ['CUDA_VISIBLE_DEVICES'] = str(idx)
  146. from .batch_analyze import BatchAnalyze
  147. model_manager = ModelSingleton()
  148. batch_ratio = 1
  149. device = get_device()
  150. if str(device).startswith('npu'):
  151. import torch_npu
  152. if torch_npu.npu.is_available():
  153. torch.npu.set_compile_mode(jit_compile=False)
  154. if str(device).startswith('npu') or str(device).startswith('cuda'):
  155. vram = get_vram(device)
  156. if vram is not None:
  157. gpu_memory = int(os.getenv('VIRTUAL_VRAM_SIZE', round(vram)))
  158. if gpu_memory >= 16:
  159. batch_ratio = 16
  160. elif gpu_memory >= 12:
  161. batch_ratio = 8
  162. elif gpu_memory >= 8:
  163. batch_ratio = 4
  164. elif gpu_memory >= 6:
  165. batch_ratio = 2
  166. else:
  167. batch_ratio = 1
  168. logger.info(f'gpu_memory: {gpu_memory} GB, batch_ratio: {batch_ratio}')
  169. else:
  170. # Default batch_ratio when VRAM can't be determined
  171. batch_ratio = 1
  172. logger.info(f'Could not determine GPU memory, using default batch_ratio: {batch_ratio}')
  173. batch_model = BatchAnalyze(model_manager, batch_ratio, formula_enable, table_enable)
  174. results = batch_model(images_with_extra_info)
  175. clean_memory(get_device())
  176. return results