vlm_analyze.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import time
  3. from loguru import logger
  4. from .model_output_to_middle_json import result_to_middle_json
  5. from ...data.data_reader_writer import DataWriter
  6. from mineru.utils.pdf_image_tools import load_images_from_pdf
  7. from ...utils.enum_class import ImageType
  8. from ...utils.models_download_utils import auto_download_and_get_model_root_path
  9. from mineru_vl_utils import MinerUClient
  10. class ModelSingleton:
  11. _instance = None
  12. _models = {}
  13. def __new__(cls, *args, **kwargs):
  14. if cls._instance is None:
  15. cls._instance = super().__new__(cls)
  16. return cls._instance
  17. def get_model(
  18. self,
  19. backend: str,
  20. model_path: str | None,
  21. server_url: str | None,
  22. **kwargs,
  23. ) -> MinerUClient:
  24. key = (backend, model_path, server_url)
  25. if key not in self._models:
  26. start_time = time.time()
  27. model = None
  28. processor = None
  29. vllm_llm = None
  30. if backend in ['transformers', 'vllm-engine'] and not model_path:
  31. model_path = auto_download_and_get_model_root_path("/","vlm")
  32. if backend == "transformers":
  33. if not model_path:
  34. raise ValueError("model_path must be provided when model or processor is None.")
  35. try:
  36. from transformers import (
  37. AutoProcessor,
  38. Qwen2VLForConditionalGeneration,
  39. )
  40. from transformers import __version__ as transformers_version
  41. except ImportError:
  42. raise ImportError("Please install transformers to use the transformers backend.")
  43. from packaging import version
  44. if version.parse(transformers_version) >= version.parse("4.56.0"):
  45. dtype_key = "dtype"
  46. else:
  47. dtype_key = "torch_dtype"
  48. model = Qwen2VLForConditionalGeneration.from_pretrained(
  49. model_path,
  50. device_map="auto",
  51. **{dtype_key: "auto"}, # type: ignore
  52. )
  53. processor = AutoProcessor.from_pretrained(
  54. model_path,
  55. use_fast=True,
  56. )
  57. elif backend == "vllm-engine":
  58. if not model_path:
  59. raise ValueError("model_path must be provided when vllm_llm is None.")
  60. try:
  61. import vllm
  62. except ImportError:
  63. raise ImportError("Please install vllm to use the vllm-engine backend.")
  64. # logger.debug(kwargs)
  65. if "gpu_memory_utilization" not in kwargs:
  66. kwargs["gpu_memory_utilization"] = 0.5
  67. if "model" not in kwargs:
  68. kwargs["model"] = model_path
  69. # 使用kwargs为 vllm初始化参数
  70. vllm_llm = vllm.LLM(**kwargs)
  71. self._models[key] = MinerUClient(
  72. backend=backend,
  73. model=model,
  74. processor=processor,
  75. vllm_llm=vllm_llm,
  76. server_url=server_url,
  77. )
  78. elapsed = round(time.time() - start_time, 2)
  79. logger.info(f"get {backend} predictor cost: {elapsed}s")
  80. return self._models[key]
  81. def doc_analyze(
  82. pdf_bytes,
  83. image_writer: DataWriter | None,
  84. predictor: MinerUClient | None = None,
  85. backend="transformers",
  86. model_path: str | None = None,
  87. server_url: str | None = None,
  88. **kwargs,
  89. ):
  90. if predictor is None:
  91. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  92. # load_images_start = time.time()
  93. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  94. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  95. # load_images_time = round(time.time() - load_images_start, 2)
  96. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  97. # infer_start = time.time()
  98. results = predictor.batch_two_step_extract(images=images_pil_list)
  99. # infer_time = round(time.time() - infer_start, 2)
  100. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  101. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  102. return middle_json, results
  103. async def aio_doc_analyze(
  104. pdf_bytes,
  105. image_writer: DataWriter | None,
  106. predictor: MinerUClient | None = None,
  107. backend="transformers",
  108. model_path: str | None = None,
  109. server_url: str | None = None,
  110. **kwargs,
  111. ):
  112. if predictor is None:
  113. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  114. # load_images_start = time.time()
  115. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  116. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  117. # load_images_time = round(time.time() - load_images_start, 2)
  118. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  119. # infer_start = time.time()
  120. results = await predictor.aio_batch_two_step_extract(images=images_pil_list)
  121. # infer_time = round(time.time() - infer_start, 2)
  122. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  123. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  124. return middle_json, results