https://github.com/opendatalab/MinerU.git

myhloli 918ed65bd5 fix(parse_pipeline): Resolve post-processing exceptions caused by partial PDFs due to file corruption or non-standard format by forcing a re-print. 1 年之前
.github 10f0ecf765 Merge pull request #869 from dt-yy/dev 1 年之前
demo 1fc053d57a refactor(magic_pdf_parse_main): optimize model data handling and JSON output 1 年之前
docs 9496c6c4cb refactor(model download script) 1 年之前
magic_pdf 918ed65bd5 fix(parse_pipeline): Resolve post-processing exceptions caused by partial PDFs due to file corruption or non-standard format by forcing a re-print. 1 年之前
next_docs ccd7566bf1 style: adjust logo size 1 年之前
projects 8ea2381334 style(gradio-app): add missing file type in upload 1 年之前
scripts 9496c6c4cb refactor(model download script) 1 年之前
signatures 355a17aa74 @strongerfly has signed the CLA in opendatalab/MinerU#487 1 年之前
tests e65ff1928f test(table): improve ppTableModel test coverage 1 年之前
.gitattributes 60c4141604 chore: add CSS and SCSS files to linguist-vendored- Update .gitattributes to mark CSS and SCSS files as vendored- Ensure these files are not included in language statistics 1 年之前
.gitignore 91f8cbe25a feat: add zh_CN docs 1 年之前
.pre-commit-config.yaml 283b597a6e feat: add [figure | table] match [caption | footnote] match algorithm v2 1 年之前
.readthedocs.yaml aa3df5ffd1 feat: using next_docs 1 年之前
Dockerfile 963d0be179 build(Dockerfile): update model download script and dependencies 1 年之前
LICENSE.md a4c72e2e33 fix: solve conflicts 1 年之前
MinerU_CLA.md 572c35f9c0 Update MinerU_CLA.md 1 年之前
README.md 7d0c4238db style: add read the docs link on the readme 1 年之前
README_ja-JP.md 56c19ac14b docs(README_ja-JP.md): update warning message and remove outdated content 1 年之前
README_zh-CN.md 7d0c4238db style: add read the docs link on the readme 1 年之前
magic-pdf.template.json 9496c6c4cb refactor(model download script) 1 年之前
requirements-docker.txt 963d0be179 build(Dockerfile): update model download script and dependencies 1 年之前
requirements-qa.txt 0aa4577874 feat: add test case (#645) 1 年之前
requirements.txt 011a1b973b refactor(ocr):Increase the dilation factor in OCR to address the issue of word concatenation. 1 年之前
setup.py fe2c2c0d8e feat(table): add RapidOCR support for RapidTable model 1 年之前
update_version.py 7fd8d97edb fix error: version is 0.0.0 1 年之前

README.md

[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU) [![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU) [![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues) [![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues) [![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf) [![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf) [![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf) [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF) [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0/mineru_demo.ipynb) [![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839) [English](README.md) | [简体中文](README_zh-CN.md)

PDF-Extract-Kit: High-Quality PDF Extraction Toolkit🔥🔥🔥

👋 join us on Discord and WeChat

read more docs on Read The Docs

Changelog

  • 2024/11/06 0.9.2 released. Integrated the StructTable-InternVL2-1B model for table recognition functionality.
  • 2024/10/31 0.9.0 released. This is a major new version with extensive code refactoring, addressing numerous issues, improving performance, reducing hardware requirements, and enhancing usability:
    • Refactored the sorting module code to use layoutreader for reading order sorting, ensuring high accuracy in various layouts.
    • Refactored the paragraph concatenation module to achieve good results in cross-column, cross-page, cross-figure, and cross-table scenarios.
    • Refactored the list and table of contents recognition functions, significantly improving the accuracy of list blocks and table of contents blocks, as well as the parsing of corresponding text paragraphs.
    • Refactored the matching logic for figures, tables, and descriptive text, greatly enhancing the accuracy of matching captions and footnotes to figures and tables, and reducing the loss rate of descriptive text to near zero.
    • Added multi-language support for OCR, supporting detection and recognition of 84 languages.For the list of supported languages, see OCR Language Support List.
    • Added memory recycling logic and other memory optimization measures, significantly reducing memory usage. The memory requirement for enabling all acceleration features except table acceleration (layout/formula/OCR) has been reduced from 16GB to 8GB, and the memory requirement for enabling all acceleration features has been reduced from 24GB to 10GB.
    • Optimized configuration file feature switches, adding an independent formula detection switch to significantly improve speed and parsing results when formula detection is not needed.
    • Integrated PDF-Extract-Kit 1.0:
    • Added the self-developed doclayout_yolo model, which speeds up processing by more than 10 times compared to the original solution while maintaining similar parsing effects, and can be freely switched with layoutlmv3 via the configuration file.
    • Upgraded formula parsing to unimernet 0.2.1, improving formula parsing accuracy while significantly reducing memory usage.
    • Due to the repository change for PDF-Extract-Kit 1.0, you need to re-download the model. Please refer to How to Download Models for detailed steps.
  • 2024/09/27 Version 0.8.1 released, Fixed some bugs, and providing a localized deployment version of the online demo and the front-end interface.
  • 2024/09/09: Version 0.8.0 released, supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.
  • 2024/08/30: Version 0.7.1 released, add paddle tablemaster table recognition option
  • 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
  • 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
  • 2024/07/05: Initial open-source release

Table of Contents

  1. MinerU
  2. TODO
  3. All Thanks To Our Contributors
  4. License Information
  5. Acknowledgments
  6. Citation
  7. Star History
  8. Magic-doc
  9. Magic-html
  10. Links

MinerU

Project Introduction

MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format. MinerU was born during the pre-training process of InternLM. We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models. Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on issue and attach the relevant PDF.

https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c

Quick Start

There are multiple different ways to experience MinerU:

Online Demo

Stable Version (Stable version verified by QA):
OpenDataLab

Test Version (Synced with dev branch updates, testing new features):
HuggingFace ModelScope

Quick CPU Demo

1. Install magic-pdf

conda create -n MinerU python=3.10
conda activate MinerU
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com

2. Download model weight files

Refer to How to Download Model Files for detailed instructions.

3. Modify the Configuration File for Additional Configuration

After completing the 2. Download model weight files step, the script will automatically generate a magic-pdf.json file in the user directory and configure the default model path. You can find the magic-pdf.json file in your 【user directory】.

[!TIP] The user directory for Windows is "C:\Users\username", for Linux it is "/home/username", and for macOS it is "/Users/username".

You can modify certain configurations in this file to enable or disable features, such as table recognition:

[!NOTE] If the following items are not present in the JSON, please manually add the required items and remove the comment content (standard JSON does not support comments).

{
    // other config
    "layout-config": {
        "model": "layoutlmv3" // Please change to "doclayout_yolo" when using doclayout_yolo.
    },
    "formula-config": {
        "mfd_model": "yolo_v8_mfd",
        "mfr_model": "unimernet_small",
        "enable": true  // The formula recognition feature is enabled by default. If you need to disable it, please change the value here to "false".
    },
    "table-config": {
        "model": "rapid_table",  // Default to using "rapid_table", can be switched to "tablemaster" or "struct_eqtable".
        "enable": false, // The table recognition feature is disabled by default. If you need to enable it, please change the value here to "true".
        "max_time": 400
    }
}

Usage

API

Processing files from local disk

image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
jso_useful_key = {"_pdf_type": "", "model_list": []}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_analyze()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")

Processing files from object storage

s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
jso_useful_key = {"_pdf_type": "", "model_list": []}
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_analyze()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")

For detailed implementation, refer to:

Deploy Derived Projects

Derived projects include secondary development projects based on MinerU by project developers and community developers,
such as application interfaces based on Gradio, RAG based on llama, web demos similar to the official website, lightweight multi-GPU load balancing client/server ends, etc. These projects may offer more features and a better user experience.
For specific deployment methods, please refer to the Derived Project README

Development Guide

TODO

TODO

  • Reading order based on the model
  • Recognition of index and list in the main text
  • Table recognition
  • Code block recognition in the main text
  • Chemical formula recognition
  • Geometric shape recognition

All Thanks To Our Contributors

License Information

LICENSE.md

This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.

Acknowledgments

Citation

@misc{wang2024mineruopensourcesolutionprecise,
      title={MinerU: An Open-Source Solution for Precise Document Content Extraction}, 
      author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
      year={2024},
      eprint={2409.18839},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.18839}, 
}

@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}

Star History

Star History Chart

Magic-doc

Magic-Doc Fast speed ppt/pptx/doc/docx/pdf extraction tool

Magic-html

Magic-HTML Mixed web page extraction tool

Links