| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- # Copyright (c) Opendatalab. All rights reserved.
- import copy
- import json
- import os
- from pathlib import Path
- from loguru import logger
- from mineru.cli.common import convert_pdf_bytes_to_bytes_by_pypdfium2, prepare_env, read_fn
- from mineru.data.data_reader_writer import FileBasedDataWriter
- from mineru.utils.draw_bbox import draw_layout_bbox, draw_span_bbox
- from mineru.utils.enum_class import MakeMode
- from mineru.backend.vlm.vlm_analyze import doc_analyze as vlm_doc_analyze
- from mineru.backend.pipeline.pipeline_analyze import doc_analyze as pipeline_doc_analyze
- from mineru.backend.pipeline.pipeline_middle_json_mkcontent import union_make as pipeline_union_make
- from mineru.backend.pipeline.model_json_to_middle_json import result_to_middle_json as pipeline_result_to_middle_json
- from mineru.backend.vlm.vlm_middle_json_mkcontent import union_make as vlm_union_make
- from mineru.utils.models_download_utils import auto_download_and_get_model_root_path
- def do_parse(
- output_dir, # Output directory for storing parsing results
- pdf_file_names: list[str], # List of PDF file names to be parsed
- pdf_bytes_list: list[bytes], # List of PDF bytes to be parsed
- p_lang_list: list[str], # List of languages for each PDF, default is 'ch' (Chinese)
- backend="pipeline", # The backend for parsing PDF, default is 'pipeline'
- parse_method="auto", # The method for parsing PDF, default is 'auto'
- p_formula_enable=True, # Enable formula parsing
- p_table_enable=True, # Enable table parsing
- server_url=None, # Server URL for vlm-sglang-client backend
- f_draw_layout_bbox=True, # Whether to draw layout bounding boxes
- f_draw_span_bbox=True, # Whether to draw span bounding boxes
- f_dump_md=True, # Whether to dump markdown files
- f_dump_middle_json=True, # Whether to dump middle JSON files
- f_dump_model_output=True, # Whether to dump model output files
- f_dump_orig_pdf=True, # Whether to dump original PDF files
- f_dump_content_list=True, # Whether to dump content list files
- f_make_md_mode=MakeMode.MM_MD, # The mode for making markdown content, default is MM_MD
- start_page_id=0, # Start page ID for parsing, default is 0
- end_page_id=None, # End page ID for parsing, default is None (parse all pages until the end of the document)
- ):
- if backend == "pipeline":
- for idx, pdf_bytes in enumerate(pdf_bytes_list):
- new_pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id, end_page_id)
- pdf_bytes_list[idx] = new_pdf_bytes
- infer_results, all_image_lists, all_pdf_docs, lang_list, ocr_enabled_list = pipeline_doc_analyze(pdf_bytes_list, p_lang_list, parse_method=parse_method, formula_enable=p_formula_enable,table_enable=p_table_enable)
- for idx, model_list in enumerate(infer_results):
- model_json = copy.deepcopy(model_list)
- pdf_file_name = pdf_file_names[idx]
- local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
- image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)
- images_list = all_image_lists[idx]
- pdf_doc = all_pdf_docs[idx]
- _lang = lang_list[idx]
- _ocr_enable = ocr_enabled_list[idx]
- middle_json = pipeline_result_to_middle_json(model_list, images_list, pdf_doc, image_writer, _lang, _ocr_enable, p_formula_enable)
- pdf_info = middle_json["pdf_info"]
- pdf_bytes = pdf_bytes_list[idx]
- if f_draw_layout_bbox:
- draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf")
- if f_draw_span_bbox:
- draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_span.pdf")
- if f_dump_orig_pdf:
- md_writer.write(
- f"{pdf_file_name}_origin.pdf",
- pdf_bytes,
- )
- if f_dump_md:
- image_dir = str(os.path.basename(local_image_dir))
- md_content_str = pipeline_union_make(pdf_info, f_make_md_mode, image_dir)
- md_writer.write_string(
- f"{pdf_file_name}.md",
- md_content_str,
- )
- if f_dump_content_list:
- image_dir = str(os.path.basename(local_image_dir))
- content_list = pipeline_union_make(pdf_info, MakeMode.CONTENT_LIST, image_dir)
- md_writer.write_string(
- f"{pdf_file_name}_content_list.json",
- json.dumps(content_list, ensure_ascii=False, indent=4),
- )
- if f_dump_middle_json:
- md_writer.write_string(
- f"{pdf_file_name}_middle.json",
- json.dumps(middle_json, ensure_ascii=False, indent=4),
- )
- if f_dump_model_output:
- md_writer.write_string(
- f"{pdf_file_name}_model.json",
- json.dumps(model_json, ensure_ascii=False, indent=4),
- )
- logger.info(f"local output dir is {local_md_dir}")
- else:
- if backend.startswith("vlm-"):
- backend = backend[4:]
- f_draw_span_bbox = False
- parse_method = "vlm"
- for idx, pdf_bytes in enumerate(pdf_bytes_list):
- pdf_file_name = pdf_file_names[idx]
- pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id, end_page_id)
- local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
- image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)
- model_path = auto_download_and_get_model_root_path('/', 'vlm')
- middle_json, infer_result = vlm_doc_analyze(pdf_bytes, image_writer=image_writer, backend=backend, model_path=model_path, server_url=server_url)
- pdf_info = middle_json["pdf_info"]
- if f_draw_layout_bbox:
- draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf")
- if f_draw_span_bbox:
- draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_span.pdf")
- if f_dump_orig_pdf:
- md_writer.write(
- f"{pdf_file_name}_origin.pdf",
- pdf_bytes,
- )
- if f_dump_md:
- image_dir = str(os.path.basename(local_image_dir))
- md_content_str = vlm_union_make(pdf_info, f_make_md_mode, image_dir)
- md_writer.write_string(
- f"{pdf_file_name}.md",
- md_content_str,
- )
- if f_dump_content_list:
- image_dir = str(os.path.basename(local_image_dir))
- content_list = vlm_union_make(pdf_info, MakeMode.CONTENT_LIST, image_dir)
- md_writer.write_string(
- f"{pdf_file_name}_content_list.json",
- json.dumps(content_list, ensure_ascii=False, indent=4),
- )
- if f_dump_middle_json:
- md_writer.write_string(
- f"{pdf_file_name}_middle.json",
- json.dumps(middle_json, ensure_ascii=False, indent=4),
- )
- if f_dump_model_output:
- model_output = ("\n" + "-" * 50 + "\n").join(infer_result)
- md_writer.write_string(
- f"{pdf_file_name}_model_output.txt",
- model_output,
- )
- logger.info(f"local output dir is {local_md_dir}")
- def parse_doc(
- path_list: list[Path],
- output_dir,
- lang="ch",
- backend="pipeline",
- method="auto",
- server_url=None,
- start_page_id=0, # Start page ID for parsing, default is 0
- end_page_id=None # End page ID for parsing, default is None (parse all pages until the end of the document)
- ):
- """
- Parameter description:
- path_list: List of document paths to be parsed, can be PDF or image files.
- output_dir: Output directory for storing parsing results.
- lang: Language option, default is 'ch', optional values include['ch', 'ch_server', 'ch_lite', 'en', 'korean', 'japan', 'chinese_cht', 'ta', 'te', 'ka']。
- Input the languages in the pdf (if known) to improve OCR accuracy. Optional.
- Adapted only for the case where the backend is set to "pipeline"
- backend: the backend for parsing pdf:
- pipeline: More general.
- vlm-transformers: More general.
- vlm-sglang-engine: Faster(engine).
- vlm-sglang-client: Faster(client).
- without method specified, pipeline will be used by default.
- method: the method for parsing pdf:
- auto: Automatically determine the method based on the file type.
- txt: Use text extraction method.
- ocr: Use OCR method for image-based PDFs.
- Without method specified, 'auto' will be used by default.
- Adapted only for the case where the backend is set to "pipeline".
- server_url: When the backend is `sglang-client`, you need to specify the server_url, for example:`http://127.0.0.1:30000`
- """
- try:
- file_name_list = []
- pdf_bytes_list = []
- lang_list = []
- for path in path_list:
- file_name = str(Path(path).stem)
- pdf_bytes = read_fn(path)
- file_name_list.append(file_name)
- pdf_bytes_list.append(pdf_bytes)
- lang_list.append(lang)
- do_parse(
- output_dir=output_dir,
- pdf_file_names=file_name_list,
- pdf_bytes_list=pdf_bytes_list,
- p_lang_list=lang_list,
- backend=backend,
- parse_method=method,
- server_url=server_url,
- start_page_id=start_page_id,
- end_page_id=end_page_id
- )
- except Exception as e:
- logger.exception(e)
- if __name__ == '__main__':
- # args
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- pdf_files_dir = os.path.join(__dir__, "pdfs")
- output_dir = os.path.join(__dir__, "output")
- pdf_suffixes = [".pdf"]
- image_suffixes = [".png", ".jpeg", ".jpg"]
- doc_path_list = []
- for doc_path in Path(pdf_files_dir).glob('*'):
- if doc_path.suffix in pdf_suffixes + image_suffixes:
- doc_path_list.append(doc_path)
- parse_doc(doc_path_list, output_dir)
|