|
|
1 anno fa | |
|---|---|---|
| .. | ||
| chemical_knowledge_introduction | 1 anno fa | |
| images | 1 anno fa | |
| FAQ_en_us.md | 1 anno fa | |
| FAQ_zh_cn.md | 1 anno fa | |
| README_Ubuntu_CUDA_Acceleration_en_US.md | 1 anno fa | |
| README_Ubuntu_CUDA_Acceleration_zh_CN.md | 1 anno fa | |
| README_Windows_CUDA_Acceleration_en_US.md | 1 anno fa | |
| README_Windows_CUDA_Acceleration_zh_CN.md | 1 anno fa | |
| download_models.py | 1 anno fa | |
| download_models_hf.py | 1 anno fa | |
| how_to_download_models_en.md | 1 anno fa | |
| how_to_download_models_zh_cn.md | 1 anno fa | |
| output_file_en_us.md | 1 anno fa | |
| output_file_zh_cn.md | 1 anno fa | |
nvidia-smi
If you see information similar to the following, it means that the NVIDIA drivers are already installed, and you can skip Step 2.
[!NOTE] Notice:
CUDA Versionshould be >= 12.1, If the displayed version number is less than 12.1, please upgrade the driver.
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 537.34 Driver Version: 537.34 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
| 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
If no driver is installed, use the following command:
sudo apt-get update
sudo apt-get install nvidia-driver-545
Install the proprietary driver and restart your computer after installation.
reboot
If Anaconda is already installed, skip this step.
wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
bash Anaconda3-2024.06-1-Linux-x86_64.sh
In the final step, enter yes, close the terminal, and reopen it.
Specify Python version 3.10.
conda create -n MinerU python=3.10
conda activate MinerU
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
[!IMPORTANT] After installation, make sure to check the version of
magic-pdfusing the following command:> magic-pdf --version > ``` > > If the version number is less than 0.7.0, please report the issue. ### 6. Download Models Refer to detailed instructions on [how to download model files](how_to_download_models_en.md). ## 7. Understand the Location of the Configuration File After completing the [6. Download Models](#6-download-models) step, the script will automatically generate a `magic-pdf.json` file in the user directory and configure the default model path. You can find the `magic-pdf.json` file in your user directory. > [!TIP] > The user directory for Linux is "/home/username". ### 8. First Run Download a sample file from the repository and test it.sh wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf magic-pdf -p small_ocr.pdf -o ./output
### 9. Test CUDA Acceleration If your graphics card has at least **8GB** of VRAM, follow these steps to test CUDA acceleration: 1. Modify the value of `"device-mode"` in the `magic-pdf.json` configuration file located in your home directory.json {
"device-mode": "cuda"}
2. Test CUDA acceleration with the following command:sh magic-pdf -p small_ocr.pdf -o ./output
### 10. Enable CUDA Acceleration for OCR 1. Download `paddlepaddle-gpu`. Installation will automatically enable OCR acceleration.sh python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
2. Test OCR acceleration with the following command:sh magic-pdf -p small_ocr.pdf -o ./output ```