magic_pdf_parse_main.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. import os
  2. import json
  3. import copy
  4. from loguru import logger
  5. from magic_pdf.libs.draw_bbox import draw_layout_bbox, draw_span_bbox
  6. from magic_pdf.pipe.UNIPipe import UNIPipe
  7. from magic_pdf.pipe.OCRPipe import OCRPipe
  8. from magic_pdf.pipe.TXTPipe import TXTPipe
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. # todo: 设备类型选择 (?)
  11. def json_md_dump(
  12. pipe,
  13. md_writer,
  14. pdf_name,
  15. content_list,
  16. md_content,
  17. orig_model_list,
  18. ):
  19. # 写入模型结果到 model.json
  20. md_writer.write(
  21. content=json.dumps(orig_model_list, ensure_ascii=False, indent=4),
  22. path=f"{pdf_name}_model.json"
  23. )
  24. # 写入中间结果到 middle.json
  25. md_writer.write(
  26. content=json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4),
  27. path=f"{pdf_name}_middle.json"
  28. )
  29. # text文本结果写入到 conent_list.json
  30. md_writer.write(
  31. content=json.dumps(content_list, ensure_ascii=False, indent=4),
  32. path=f"{pdf_name}_content_list.json"
  33. )
  34. # 写入结果到 .md 文件中
  35. md_writer.write(
  36. content=md_content,
  37. path=f"{pdf_name}.md"
  38. )
  39. # 可视化
  40. def draw_visualization_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name):
  41. # 画布局框,附带排序结果
  42. draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name)
  43. # 画 span 框
  44. draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name)
  45. def pdf_parse_main(
  46. pdf_path: str,
  47. parse_method: str = 'auto',
  48. model_json_path: str = None,
  49. is_json_md_dump: bool = True,
  50. is_draw_visualization_bbox: bool = True,
  51. output_dir: str = None
  52. ):
  53. """
  54. 执行从 pdf 转换到 json、md 的过程,输出 md 和 json 文件到 pdf 文件所在的目录
  55. :param pdf_path: .pdf 文件的路径,可以是相对路径,也可以是绝对路径
  56. :param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr
  57. :param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应
  58. :param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中
  59. :param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果
  60. """
  61. try:
  62. pdf_name = os.path.basename(pdf_path).split(".")[0]
  63. pdf_path_parent = os.path.dirname(pdf_path)
  64. if output_dir:
  65. output_path = os.path.join(output_dir, pdf_name)
  66. else:
  67. output_path = os.path.join(pdf_path_parent, pdf_name)
  68. output_image_path = os.path.join(output_path, 'images')
  69. # 获取图片的父路径,为的是以相对路径保存到 .md 和 conent_list.json 文件中
  70. image_path_parent = os.path.basename(output_image_path)
  71. pdf_bytes = open(pdf_path, "rb").read() # 读取 pdf 文件的二进制数据
  72. orig_model_list = []
  73. if model_json_path:
  74. # 读取已经被模型解析后的pdf文件的 json 原始数据,list 类型
  75. model_json = json.loads(open(model_json_path, "r", encoding="utf-8").read())
  76. orig_model_list = copy.deepcopy(model_json)
  77. else:
  78. model_json = []
  79. # 执行解析步骤
  80. # image_writer = DiskReaderWriter(output_image_path)
  81. image_writer, md_writer = DiskReaderWriter(output_image_path), DiskReaderWriter(output_path)
  82. # 选择解析方式
  83. # jso_useful_key = {"_pdf_type": "", "model_list": model_json}
  84. # pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
  85. if parse_method == "auto":
  86. jso_useful_key = {"_pdf_type": "", "model_list": model_json}
  87. pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
  88. elif parse_method == "txt":
  89. pipe = TXTPipe(pdf_bytes, model_json, image_writer)
  90. elif parse_method == "ocr":
  91. pipe = OCRPipe(pdf_bytes, model_json, image_writer)
  92. else:
  93. logger.error("unknown parse method, only auto, ocr, txt allowed")
  94. exit(1)
  95. # 执行分类
  96. pipe.pipe_classify()
  97. # 如果没有传入模型数据,则使用内置模型解析
  98. if len(model_json) == 0:
  99. pipe.pipe_analyze() # 解析
  100. orig_model_list = copy.deepcopy(pipe.model_list)
  101. # 执行解析
  102. pipe.pipe_parse()
  103. # 保存 text 和 md 格式的结果
  104. content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode="none")
  105. md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode="none")
  106. if is_json_md_dump:
  107. json_md_dump(pipe, md_writer, pdf_name, content_list, md_content, orig_model_list)
  108. if is_draw_visualization_bbox:
  109. draw_visualization_bbox(pipe.pdf_mid_data['pdf_info'], pdf_bytes, output_path, pdf_name)
  110. except Exception as e:
  111. logger.exception(e)
  112. # 测试
  113. if __name__ == '__main__':
  114. pdf_path = r"D:\project\20240617magicpdf\Magic-PDF\demo\demo1.pdf"
  115. pdf_parse_main(pdf_path)