batch_analyze.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. import html
  2. import cv2
  3. from loguru import logger
  4. from tqdm import tqdm
  5. from collections import defaultdict
  6. import numpy as np
  7. from .model_init import AtomModelSingleton
  8. from .model_list import AtomicModel
  9. from ...utils.config_reader import get_formula_enable, get_table_enable
  10. from ...utils.model_utils import crop_img, get_res_list_from_layout_res, clean_vram
  11. from ...utils.ocr_utils import merge_det_boxes, update_det_boxes, sorted_boxes
  12. from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list, OcrConfidence, get_rotate_crop_image
  13. from ...utils.pdf_image_tools import get_crop_np_img
  14. YOLO_LAYOUT_BASE_BATCH_SIZE = 1
  15. MFD_BASE_BATCH_SIZE = 1
  16. MFR_BASE_BATCH_SIZE = 16
  17. OCR_DET_BASE_BATCH_SIZE = 16
  18. TABLE_ORI_CLS_BATCH_SIZE = 16
  19. TABLE_Wired_Wireless_CLS_BATCH_SIZE = 16
  20. class BatchAnalyze:
  21. def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = True):
  22. self.batch_ratio = batch_ratio
  23. self.formula_enable = get_formula_enable(formula_enable)
  24. self.table_enable = get_table_enable(table_enable)
  25. self.model_manager = model_manager
  26. self.enable_ocr_det_batch = enable_ocr_det_batch
  27. def __call__(self, images_with_extra_info: list) -> list:
  28. if len(images_with_extra_info) == 0:
  29. return []
  30. images_layout_res = []
  31. self.model = self.model_manager.get_model(
  32. lang=None,
  33. formula_enable=self.formula_enable,
  34. table_enable=self.table_enable,
  35. )
  36. atom_model_manager = AtomModelSingleton()
  37. pil_images = [image for image, _, _ in images_with_extra_info]
  38. np_images = [np.asarray(image) for image, _, _ in images_with_extra_info]
  39. # doclayout_yolo
  40. images_layout_res += self.model.layout_model.batch_predict(
  41. pil_images, YOLO_LAYOUT_BASE_BATCH_SIZE
  42. )
  43. if self.formula_enable:
  44. # 公式检测
  45. images_mfd_res = self.model.mfd_model.batch_predict(
  46. np_images, MFD_BASE_BATCH_SIZE
  47. )
  48. # 公式识别
  49. images_formula_list = self.model.mfr_model.batch_predict(
  50. images_mfd_res,
  51. np_images,
  52. batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
  53. )
  54. mfr_count = 0
  55. for image_index in range(len(np_images)):
  56. images_layout_res[image_index] += images_formula_list[image_index]
  57. mfr_count += len(images_formula_list[image_index])
  58. # 清理显存
  59. clean_vram(self.model.device, vram_threshold=8)
  60. ocr_res_list_all_page = []
  61. table_res_list_all_page = []
  62. for index in range(len(np_images)):
  63. _, ocr_enable, _lang = images_with_extra_info[index]
  64. layout_res = images_layout_res[index]
  65. np_img = np_images[index]
  66. ocr_res_list, table_res_list, single_page_mfdetrec_res = (
  67. get_res_list_from_layout_res(layout_res)
  68. )
  69. ocr_res_list_all_page.append({'ocr_res_list':ocr_res_list,
  70. 'lang':_lang,
  71. 'ocr_enable':ocr_enable,
  72. 'np_img':np_img,
  73. 'single_page_mfdetrec_res':single_page_mfdetrec_res,
  74. 'layout_res':layout_res,
  75. })
  76. for table_res in table_res_list:
  77. def get_crop_table_img(scale):
  78. crop_xmin, crop_ymin = int(table_res['poly'][0]), int(table_res['poly'][1])
  79. crop_xmax, crop_ymax = int(table_res['poly'][4]), int(table_res['poly'][5])
  80. bbox = (int(crop_xmin / scale), int(crop_ymin / scale), int(crop_xmax / scale), int(crop_ymax / scale))
  81. return get_crop_np_img(bbox, np_img, scale=scale)
  82. wireless_table_img = get_crop_table_img(scale = 1)
  83. wired_table_img = get_crop_table_img(scale = 10/3)
  84. table_res_list_all_page.append({'table_res':table_res,
  85. 'lang':_lang,
  86. 'table_img':wireless_table_img,
  87. 'wired_table_img':wired_table_img,
  88. })
  89. # 表格识别 table recognition
  90. if self.table_enable:
  91. # 图片旋转批量处理
  92. img_orientation_cls_model = atom_model_manager.get_atom_model(
  93. atom_model_name=AtomicModel.ImgOrientationCls,
  94. )
  95. try:
  96. img_orientation_cls_model.batch_predict(table_res_list_all_page,
  97. det_batch_size=self.batch_ratio * OCR_DET_BASE_BATCH_SIZE,
  98. batch_size=TABLE_ORI_CLS_BATCH_SIZE)
  99. except Exception as e:
  100. logger.warning(
  101. f"Image orientation classification failed: {e}, using original image"
  102. )
  103. # 表格分类
  104. table_cls_model = atom_model_manager.get_atom_model(
  105. atom_model_name=AtomicModel.TableCls,
  106. )
  107. try:
  108. table_cls_model.batch_predict(table_res_list_all_page,
  109. batch_size=TABLE_Wired_Wireless_CLS_BATCH_SIZE)
  110. except Exception as e:
  111. logger.warning(
  112. f"Table classification failed: {e}, using default model"
  113. )
  114. # OCR det 过程,顺序执行
  115. rec_img_lang_group = defaultdict(list)
  116. det_ocr_engine = atom_model_manager.get_atom_model(
  117. atom_model_name=AtomicModel.OCR,
  118. det_db_box_thresh=0.5,
  119. det_db_unclip_ratio=1.6,
  120. enable_merge_det_boxes=False,
  121. )
  122. for index, table_res_dict in enumerate(
  123. tqdm(table_res_list_all_page, desc="Table-ocr det")
  124. ):
  125. bgr_image = cv2.cvtColor(table_res_dict["table_img"], cv2.COLOR_RGB2BGR)
  126. ocr_result = det_ocr_engine.ocr(bgr_image, rec=False)[0]
  127. # 构造需要 OCR 识别的图片字典,包括cropped_img, dt_box, table_id,并按照语言进行分组
  128. for dt_box in ocr_result:
  129. rec_img_lang_group[_lang].append(
  130. {
  131. "cropped_img": get_rotate_crop_image(
  132. bgr_image, np.asarray(dt_box, dtype=np.float32)
  133. ),
  134. "dt_box": np.asarray(dt_box, dtype=np.float32),
  135. "table_id": index,
  136. }
  137. )
  138. # OCR rec,按照语言分批处理
  139. for _lang, rec_img_list in rec_img_lang_group.items():
  140. ocr_engine = atom_model_manager.get_atom_model(
  141. atom_model_name=AtomicModel.OCR,
  142. det_db_box_thresh=0.5,
  143. det_db_unclip_ratio=1.6,
  144. lang=_lang,
  145. enable_merge_det_boxes=False,
  146. )
  147. cropped_img_list = [item["cropped_img"] for item in rec_img_list]
  148. ocr_res_list = ocr_engine.ocr(cropped_img_list, det=False, tqdm_enable=True, tqdm_desc=f"Table-ocr rec {_lang}")[0]
  149. # 按照 table_id 将识别结果进行回填
  150. for img_dict, ocr_res in zip(rec_img_list, ocr_res_list):
  151. if table_res_list_all_page[img_dict["table_id"]].get("ocr_result"):
  152. table_res_list_all_page[img_dict["table_id"]]["ocr_result"].append(
  153. [img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
  154. )
  155. else:
  156. table_res_list_all_page[img_dict["table_id"]]["ocr_result"] = [
  157. [img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
  158. ]
  159. clean_vram(self.model.device, vram_threshold=8)
  160. # 先对所有表格使用无线表格模型,然后对分类为有线的表格使用有线表格模型
  161. wireless_table_model = atom_model_manager.get_atom_model(
  162. atom_model_name=AtomicModel.WirelessTable,
  163. )
  164. wireless_table_model.batch_predict(table_res_list_all_page)
  165. # 单独拿出有线表格进行预测
  166. wired_table_res_list = []
  167. for table_res_dict in table_res_list_all_page:
  168. # logger.debug(f"Table classification result: {table_res_dict["table_res"]["cls_label"]} with confidence {table_res_dict["table_res"]["cls_score"]}")
  169. if (
  170. (table_res_dict["table_res"]["cls_label"] == AtomicModel.WirelessTable and table_res_dict["table_res"]["cls_score"] < 0.9)
  171. or table_res_dict["table_res"]["cls_label"] == AtomicModel.WiredTable
  172. ):
  173. wired_table_res_list.append(table_res_dict)
  174. del table_res_dict["table_res"]["cls_label"]
  175. del table_res_dict["table_res"]["cls_score"]
  176. if wired_table_res_list:
  177. for table_res_dict in tqdm(
  178. wired_table_res_list, desc="Table-wired Predict"
  179. ):
  180. if not table_res_dict.get("ocr_result", None):
  181. continue
  182. wired_table_model = atom_model_manager.get_atom_model(
  183. atom_model_name=AtomicModel.WiredTable,
  184. lang=table_res_dict["lang"],
  185. )
  186. table_res_dict["table_res"]["html"] = wired_table_model.predict(
  187. table_res_dict["wired_table_img"],
  188. table_res_dict["ocr_result"],
  189. table_res_dict["table_res"].get("html", None)
  190. )
  191. # 表格格式清理
  192. for table_res_dict in table_res_list_all_page:
  193. html_code = table_res_dict["table_res"].get("html", "") or ""
  194. # 检查html_code是否包含'<table>'和'</table>'
  195. if "<table>" in html_code and "</table>" in html_code:
  196. # 选用<table>到</table>的内容,放入table_res_dict['table_res']['html']
  197. start_index = html_code.find("<table>")
  198. end_index = html_code.rfind("</table>") + len("</table>")
  199. table_res_dict["table_res"]["html"] = html_code[start_index:end_index]
  200. # OCR det
  201. if self.enable_ocr_det_batch:
  202. # 批处理模式 - 按语言和分辨率分组
  203. # 收集所有需要OCR检测的裁剪图像
  204. all_cropped_images_info = []
  205. for ocr_res_list_dict in ocr_res_list_all_page:
  206. _lang = ocr_res_list_dict['lang']
  207. for res in ocr_res_list_dict['ocr_res_list']:
  208. new_image, useful_list = crop_img(
  209. res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
  210. )
  211. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  212. ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
  213. )
  214. # BGR转换
  215. bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
  216. all_cropped_images_info.append((
  217. bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang
  218. ))
  219. # 按语言分组
  220. lang_groups = defaultdict(list)
  221. for crop_info in all_cropped_images_info:
  222. lang = crop_info[5]
  223. lang_groups[lang].append(crop_info)
  224. # 对每种语言按分辨率分组并批处理
  225. for lang, lang_crop_list in lang_groups.items():
  226. if not lang_crop_list:
  227. continue
  228. # logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images")
  229. # 获取OCR模型
  230. ocr_model = atom_model_manager.get_atom_model(
  231. atom_model_name=AtomicModel.OCR,
  232. det_db_box_thresh=0.3,
  233. lang=lang
  234. )
  235. # 按分辨率分组并同时完成padding
  236. # RESOLUTION_GROUP_STRIDE = 32
  237. RESOLUTION_GROUP_STRIDE = 64 # 定义分辨率分组的步进值
  238. resolution_groups = defaultdict(list)
  239. for crop_info in lang_crop_list:
  240. cropped_img = crop_info[0]
  241. h, w = cropped_img.shape[:2]
  242. # 使用更大的分组容差,减少分组数量
  243. # 将尺寸标准化到32的倍数
  244. normalized_h = ((h + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE # 向上取整到32的倍数
  245. normalized_w = ((w + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  246. group_key = (normalized_h, normalized_w)
  247. resolution_groups[group_key].append(crop_info)
  248. # 对每个分辨率组进行批处理
  249. for group_key, group_crops in tqdm(resolution_groups.items(), desc=f"OCR-det {lang}"):
  250. # 计算目标尺寸(组内最大尺寸,向上取整到32的倍数)
  251. max_h = max(crop_info[0].shape[0] for crop_info in group_crops)
  252. max_w = max(crop_info[0].shape[1] for crop_info in group_crops)
  253. target_h = ((max_h + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  254. target_w = ((max_w + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  255. # 对所有图像进行padding到统一尺寸
  256. batch_images = []
  257. for crop_info in group_crops:
  258. img = crop_info[0]
  259. h, w = img.shape[:2]
  260. # 创建目标尺寸的白色背景
  261. padded_img = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
  262. # 将原图像粘贴到左上角
  263. padded_img[:h, :w] = img
  264. batch_images.append(padded_img)
  265. # 批处理检测
  266. det_batch_size = min(len(batch_images), self.batch_ratio * OCR_DET_BASE_BATCH_SIZE) # 增加批处理大小
  267. # logger.debug(f"OCR-det batch: {det_batch_size} images, target size: {target_h}x{target_w}")
  268. batch_results = ocr_model.text_detector.batch_predict(batch_images, det_batch_size)
  269. # 处理批处理结果
  270. for i, (crop_info, (dt_boxes, elapse)) in enumerate(zip(group_crops, batch_results)):
  271. bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang = crop_info
  272. if dt_boxes is not None and len(dt_boxes) > 0:
  273. # 直接应用原始OCR流程中的关键处理步骤
  274. # 1. 排序检测框
  275. if len(dt_boxes) > 0:
  276. dt_boxes_sorted = sorted_boxes(dt_boxes)
  277. else:
  278. dt_boxes_sorted = []
  279. # 2. 合并相邻检测框
  280. if dt_boxes_sorted:
  281. dt_boxes_merged = merge_det_boxes(dt_boxes_sorted)
  282. else:
  283. dt_boxes_merged = []
  284. # 3. 根据公式位置更新检测框(关键步骤!)
  285. if dt_boxes_merged and adjusted_mfdetrec_res:
  286. dt_boxes_final = update_det_boxes(dt_boxes_merged, adjusted_mfdetrec_res)
  287. else:
  288. dt_boxes_final = dt_boxes_merged
  289. # 构造OCR结果格式
  290. ocr_res = [box.tolist() if hasattr(box, 'tolist') else box for box in dt_boxes_final]
  291. if ocr_res:
  292. ocr_result_list = get_ocr_result_list(
  293. ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], bgr_image, _lang
  294. )
  295. ocr_res_list_dict['layout_res'].extend(ocr_result_list)
  296. else:
  297. # 原始单张处理模式
  298. for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="OCR-det Predict"):
  299. # Process each area that requires OCR processing
  300. _lang = ocr_res_list_dict['lang']
  301. # Get OCR results for this language's images
  302. ocr_model = atom_model_manager.get_atom_model(
  303. atom_model_name=AtomicModel.OCR,
  304. ocr_show_log=False,
  305. det_db_box_thresh=0.3,
  306. lang=_lang
  307. )
  308. for res in ocr_res_list_dict['ocr_res_list']:
  309. new_image, useful_list = crop_img(
  310. res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
  311. )
  312. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  313. ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
  314. )
  315. # OCR-det
  316. bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
  317. ocr_res = ocr_model.ocr(
  318. bgr_image, mfd_res=adjusted_mfdetrec_res, rec=False
  319. )[0]
  320. # Integration results
  321. if ocr_res:
  322. ocr_result_list = get_ocr_result_list(
  323. ocr_res, useful_list, ocr_res_list_dict['ocr_enable'],bgr_image, _lang
  324. )
  325. ocr_res_list_dict['layout_res'].extend(ocr_result_list)
  326. # OCR rec
  327. # Create dictionaries to store items by language
  328. need_ocr_lists_by_lang = {} # Dict of lists for each language
  329. img_crop_lists_by_lang = {} # Dict of lists for each language
  330. for layout_res in images_layout_res:
  331. for layout_res_item in layout_res:
  332. if layout_res_item['category_id'] in [15]:
  333. if 'np_img' in layout_res_item and 'lang' in layout_res_item:
  334. lang = layout_res_item['lang']
  335. # Initialize lists for this language if not exist
  336. if lang not in need_ocr_lists_by_lang:
  337. need_ocr_lists_by_lang[lang] = []
  338. img_crop_lists_by_lang[lang] = []
  339. # Add to the appropriate language-specific lists
  340. need_ocr_lists_by_lang[lang].append(layout_res_item)
  341. img_crop_lists_by_lang[lang].append(layout_res_item['np_img'])
  342. # Remove the fields after adding to lists
  343. layout_res_item.pop('np_img')
  344. layout_res_item.pop('lang')
  345. if len(img_crop_lists_by_lang) > 0:
  346. # Process OCR by language
  347. total_processed = 0
  348. # Process each language separately
  349. for lang, img_crop_list in img_crop_lists_by_lang.items():
  350. if len(img_crop_list) > 0:
  351. # Get OCR results for this language's images
  352. ocr_model = atom_model_manager.get_atom_model(
  353. atom_model_name=AtomicModel.OCR,
  354. det_db_box_thresh=0.3,
  355. lang=lang
  356. )
  357. ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
  358. # Verify we have matching counts
  359. assert len(ocr_res_list) == len(
  360. need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}'
  361. # Process OCR results for this language
  362. for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]):
  363. ocr_text, ocr_score = ocr_res_list[index]
  364. layout_res_item['text'] = ocr_text
  365. layout_res_item['score'] = float(f"{ocr_score:.3f}")
  366. if ocr_score < OcrConfidence.min_confidence:
  367. layout_res_item['category_id'] = 16
  368. else:
  369. layout_res_bbox = [layout_res_item['poly'][0], layout_res_item['poly'][1],
  370. layout_res_item['poly'][4], layout_res_item['poly'][5]]
  371. layout_res_width = layout_res_bbox[2] - layout_res_bbox[0]
  372. layout_res_height = layout_res_bbox[3] - layout_res_bbox[1]
  373. if ocr_text in ['(204号', '(20', '(2', '(2号', '(20号', '号', '(204'] and ocr_score < 0.8 and layout_res_width < layout_res_height:
  374. layout_res_item['category_id'] = 16
  375. total_processed += len(img_crop_list)
  376. return images_layout_res