magic_model.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import (
  12. _is_in,
  13. bbox_relative_pos,
  14. bbox_distance,
  15. _is_part_overlap,
  16. calculate_overlap_area_in_bbox1_area_ratio, calculate_iou,
  17. )
  18. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  19. CAPATION_OVERLAP_AREA_RATIO = 0.6
  20. class MagicModel:
  21. """
  22. 每个函数没有得到元素的时候返回空list
  23. """
  24. def __fix_axis(self):
  25. for model_page_info in self.__model_list:
  26. need_remove_list = []
  27. page_no = model_page_info["page_info"]["page_no"]
  28. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  29. model_page_info, self.__docs[page_no]
  30. )
  31. layout_dets = model_page_info["layout_dets"]
  32. for layout_det in layout_dets:
  33. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  34. bbox = [
  35. int(x0 / horizontal_scale_ratio),
  36. int(y0 / vertical_scale_ratio),
  37. int(x1 / horizontal_scale_ratio),
  38. int(y1 / vertical_scale_ratio),
  39. ]
  40. layout_det["bbox"] = bbox
  41. # 删除高度或者宽度小于等于0的spans
  42. if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
  43. need_remove_list.append(layout_det)
  44. for need_remove in need_remove_list:
  45. layout_dets.remove(need_remove)
  46. def __fix_by_remove_low_confidence(self):
  47. for model_page_info in self.__model_list:
  48. need_remove_list = []
  49. layout_dets = model_page_info["layout_dets"]
  50. for layout_det in layout_dets:
  51. if layout_det["score"] <= 0.05:
  52. need_remove_list.append(layout_det)
  53. else:
  54. continue
  55. for need_remove in need_remove_list:
  56. layout_dets.remove(need_remove)
  57. def __fix_by_remove_high_iou_and_low_confidence(self):
  58. for model_page_info in self.__model_list:
  59. need_remove_list = []
  60. layout_dets = model_page_info["layout_dets"]
  61. for layout_det1 in layout_dets:
  62. for layout_det2 in layout_dets:
  63. if layout_det1 == layout_det2:
  64. continue
  65. if layout_det1["category_id"] in [0,1,2,3,4,5,6,7,8,9] and layout_det2["category_id"] in [0,1,2,3,4,5,6,7,8,9]:
  66. if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9:
  67. if layout_det1['score'] < layout_det2['score']:
  68. layout_det_need_remove = layout_det1
  69. else:
  70. layout_det_need_remove = layout_det2
  71. if layout_det_need_remove not in need_remove_list:
  72. need_remove_list.append(layout_det_need_remove)
  73. else:
  74. continue
  75. else:
  76. continue
  77. for need_remove in need_remove_list:
  78. layout_dets.remove(need_remove)
  79. def __init__(self, model_list: list, docs: fitz.Document):
  80. self.__model_list = model_list
  81. self.__docs = docs
  82. self.__fix_axis()
  83. self.__fix_by_remove_low_confidence()
  84. self.__fix_by_remove_high_iou_and_low_confidence()
  85. def __reduct_overlap(self, bboxes):
  86. N = len(bboxes)
  87. keep = [True] * N
  88. for i in range(N):
  89. for j in range(N):
  90. if i == j:
  91. continue
  92. if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
  93. keep[i] = False
  94. return [bboxes[i] for i in range(N) if keep[i]]
  95. def __tie_up_category_by_distance(
  96. self, page_no, subject_category_id, object_category_id
  97. ):
  98. """
  99. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  100. """
  101. ret = []
  102. MAX_DIS_OF_POINT = 10**9 + 7
  103. def expand_bbox(bbox1, bbox2):
  104. x0 = min(bbox1[0], bbox2[0])
  105. y0 = min(bbox1[1], bbox2[1])
  106. x1 = max(bbox1[2], bbox2[2])
  107. y1 = max(bbox1[3], bbox2[3])
  108. return [x0, y0, x1, y1]
  109. def get_bbox_area(bbox):
  110. return abs(bbox[2] - bbox[0]) * abs(bbox[3] - bbox[1])
  111. # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
  112. # 再求出筛选出的 subjects 和 object 的最短距离!
  113. def may_find_other_nearest_bbox(subject_idx, object_idx):
  114. ret = float("inf")
  115. x0 = min(
  116. all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
  117. )
  118. y0 = min(
  119. all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
  120. )
  121. x1 = max(
  122. all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
  123. )
  124. y1 = max(
  125. all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
  126. )
  127. object_area = abs(
  128. all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
  129. ) * abs(
  130. all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
  131. )
  132. for i in range(len(all_bboxes)):
  133. if (
  134. i == subject_idx
  135. or all_bboxes[i]["category_id"] != subject_category_id
  136. ):
  137. continue
  138. if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
  139. all_bboxes[i]["bbox"], [x0, y0, x1, y1]
  140. ):
  141. i_area = abs(
  142. all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
  143. ) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
  144. if i_area >= object_area:
  145. ret = min(float("inf"), dis[i][object_idx])
  146. return ret
  147. subjects = self.__reduct_overlap(
  148. list(
  149. map(
  150. lambda x: {"bbox": x["bbox"], "score": x["score"]},
  151. filter(
  152. lambda x: x["category_id"] == subject_category_id,
  153. self.__model_list[page_no]["layout_dets"],
  154. ),
  155. )
  156. )
  157. )
  158. objects = self.__reduct_overlap(
  159. list(
  160. map(
  161. lambda x: {"bbox": x["bbox"], "score": x["score"]},
  162. filter(
  163. lambda x: x["category_id"] == object_category_id,
  164. self.__model_list[page_no]["layout_dets"],
  165. ),
  166. )
  167. )
  168. )
  169. subject_object_relation_map = {}
  170. subjects.sort(
  171. key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
  172. ) # get the distance !
  173. all_bboxes = []
  174. for v in subjects:
  175. all_bboxes.append(
  176. {
  177. "category_id": subject_category_id,
  178. "bbox": v["bbox"],
  179. "score": v["score"],
  180. }
  181. )
  182. for v in objects:
  183. all_bboxes.append(
  184. {
  185. "category_id": object_category_id,
  186. "bbox": v["bbox"],
  187. "score": v["score"],
  188. }
  189. )
  190. N = len(all_bboxes)
  191. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  192. for i in range(N):
  193. for j in range(i):
  194. if (
  195. all_bboxes[i]["category_id"] == subject_category_id
  196. and all_bboxes[j]["category_id"] == subject_category_id
  197. ):
  198. continue
  199. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  200. dis[j][i] = dis[i][j]
  201. used = set()
  202. for i in range(N):
  203. # 求第 i 个 subject 所关联的 object
  204. if all_bboxes[i]["category_id"] != subject_category_id:
  205. continue
  206. seen = set()
  207. candidates = []
  208. arr = []
  209. for j in range(N):
  210. pos_flag_count = sum(
  211. list(
  212. map(
  213. lambda x: 1 if x else 0,
  214. bbox_relative_pos(
  215. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  216. ),
  217. )
  218. )
  219. )
  220. if pos_flag_count > 1:
  221. continue
  222. if (
  223. all_bboxes[j]["category_id"] != object_category_id
  224. or j in used
  225. or dis[i][j] == MAX_DIS_OF_POINT
  226. ):
  227. continue
  228. left, right, _, _ = bbox_relative_pos(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]) # 由 pos_flag_count 相关逻辑保证本段逻辑准确性
  229. if left or right:
  230. one_way_dis = all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
  231. else:
  232. one_way_dis = all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1]
  233. if dis[i][j] > one_way_dis:
  234. continue
  235. arr.append((dis[i][j], j))
  236. arr.sort(key=lambda x: x[0])
  237. if len(arr) > 0:
  238. # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
  239. if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
  240. candidates.append(arr[0][1])
  241. seen.add(arr[0][1])
  242. # 已经获取初始种子
  243. for j in set(candidates):
  244. tmp = []
  245. for k in range(i + 1, N):
  246. pos_flag_count = sum(
  247. list(
  248. map(
  249. lambda x: 1 if x else 0,
  250. bbox_relative_pos(
  251. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  252. ),
  253. )
  254. )
  255. )
  256. if pos_flag_count > 1:
  257. continue
  258. if (
  259. all_bboxes[k]["category_id"] != object_category_id
  260. or k in used
  261. or k in seen
  262. or dis[j][k] == MAX_DIS_OF_POINT
  263. ):
  264. continue
  265. is_nearest = True
  266. for l in range(i + 1, N):
  267. if l in (j, k) or l in used or l in seen:
  268. continue
  269. if not float_gt(dis[l][k], dis[j][k]):
  270. is_nearest = False
  271. break
  272. if is_nearest:
  273. tmp.append(k)
  274. seen.add(k)
  275. candidates = tmp
  276. if len(candidates) == 0:
  277. break
  278. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  279. # 先扩一下 bbox,
  280. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  281. all_bboxes[i]["bbox"][0]
  282. ]
  283. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  284. all_bboxes[i]["bbox"][1]
  285. ]
  286. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  287. all_bboxes[i]["bbox"][2]
  288. ]
  289. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  290. all_bboxes[i]["bbox"][3]
  291. ]
  292. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  293. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  294. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  295. caption_poses = [
  296. [ox0, oy0, ix0, oy1],
  297. [ox0, oy0, ox1, iy0],
  298. [ox0, iy1, ox1, oy1],
  299. [ix1, oy0, ox1, oy1],
  300. ]
  301. caption_areas = []
  302. for bbox in caption_poses:
  303. embed_arr = []
  304. for idx in seen:
  305. if (
  306. calculate_overlap_area_in_bbox1_area_ratio(
  307. all_bboxes[idx]["bbox"], bbox
  308. )
  309. > CAPATION_OVERLAP_AREA_RATIO
  310. ):
  311. embed_arr.append(idx)
  312. if len(embed_arr) > 0:
  313. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  314. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  315. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  316. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  317. caption_areas.append(
  318. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  319. )
  320. else:
  321. caption_areas.append(0)
  322. subject_object_relation_map[i] = []
  323. if max(caption_areas) > 0:
  324. max_area_idx = caption_areas.index(max(caption_areas))
  325. caption_bbox = caption_poses[max_area_idx]
  326. for j in seen:
  327. if (
  328. calculate_overlap_area_in_bbox1_area_ratio(
  329. all_bboxes[j]["bbox"], caption_bbox
  330. )
  331. > CAPATION_OVERLAP_AREA_RATIO
  332. ):
  333. used.add(j)
  334. subject_object_relation_map[i].append(j)
  335. for i in sorted(subject_object_relation_map.keys()):
  336. result = {
  337. "subject_body": all_bboxes[i]["bbox"],
  338. "all": all_bboxes[i]["bbox"],
  339. "score": all_bboxes[i]["score"],
  340. }
  341. if len(subject_object_relation_map[i]) > 0:
  342. x0 = min(
  343. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  344. )
  345. y0 = min(
  346. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  347. )
  348. x1 = max(
  349. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  350. )
  351. y1 = max(
  352. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  353. )
  354. result["object_body"] = [x0, y0, x1, y1]
  355. result["all"] = [
  356. min(x0, all_bboxes[i]["bbox"][0]),
  357. min(y0, all_bboxes[i]["bbox"][1]),
  358. max(x1, all_bboxes[i]["bbox"][2]),
  359. max(y1, all_bboxes[i]["bbox"][3]),
  360. ]
  361. ret.append(result)
  362. total_subject_object_dis = 0
  363. # 计算已经配对的 distance 距离
  364. for i in subject_object_relation_map.keys():
  365. for j in subject_object_relation_map[i]:
  366. total_subject_object_dis += bbox_distance(
  367. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  368. )
  369. # 计算未匹配的 subject 和 object 的距离(非精确版)
  370. with_caption_subject = set(
  371. [
  372. key
  373. for key in subject_object_relation_map.keys()
  374. if len(subject_object_relation_map[i]) > 0
  375. ]
  376. )
  377. for i in range(N):
  378. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  379. continue
  380. candidates = []
  381. for j in range(N):
  382. if (
  383. all_bboxes[j]["category_id"] != subject_category_id
  384. or j in with_caption_subject
  385. ):
  386. continue
  387. candidates.append((dis[i][j], j))
  388. if len(candidates) > 0:
  389. candidates.sort(key=lambda x: x[0])
  390. total_subject_object_dis += candidates[0][1]
  391. with_caption_subject.add(j)
  392. return ret, total_subject_object_dis
  393. def get_imgs(self, page_no: int): # @许瑞
  394. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  395. return [
  396. {
  397. "bbox": record["all"],
  398. "img_body_bbox": record["subject_body"],
  399. "img_caption_bbox": record.get("object_body", None),
  400. "score": record["score"],
  401. }
  402. for record in records
  403. ]
  404. def get_tables(
  405. self, page_no: int
  406. ) -> list: # 3个坐标, caption, table主体,table-note
  407. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  408. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  409. ret = []
  410. N, M = len(with_captions), len(with_footnotes)
  411. assert N == M
  412. for i in range(N):
  413. record = {
  414. "score": with_captions[i]["score"],
  415. "table_caption_bbox": with_captions[i].get("object_body", None),
  416. "table_body_bbox": with_captions[i]["subject_body"],
  417. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  418. }
  419. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  420. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  421. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  422. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  423. record["bbox"] = [x0, y0, x1, y1]
  424. ret.append(record)
  425. return ret
  426. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  427. inline_equations = self.__get_blocks_by_type(
  428. ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
  429. )
  430. interline_equations = self.__get_blocks_by_type(
  431. ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
  432. )
  433. interline_equations_blocks = self.__get_blocks_by_type(
  434. ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
  435. )
  436. return inline_equations, interline_equations, interline_equations_blocks
  437. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  438. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  439. return blocks
  440. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  441. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  442. return blocks
  443. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  444. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  445. return blocks
  446. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  447. text_spans = []
  448. model_page_info = self.__model_list[page_no]
  449. layout_dets = model_page_info["layout_dets"]
  450. for layout_det in layout_dets:
  451. if layout_det["category_id"] == "15":
  452. span = {
  453. "bbox": layout_det["bbox"],
  454. "content": layout_det["text"],
  455. }
  456. text_spans.append(span)
  457. return text_spans
  458. def get_all_spans(self, page_no: int) -> list:
  459. def remove_duplicate_spans(spans):
  460. new_spans = []
  461. for span in spans:
  462. if not any(span == existing_span for existing_span in new_spans):
  463. new_spans.append(span)
  464. return new_spans
  465. all_spans = []
  466. model_page_info = self.__model_list[page_no]
  467. layout_dets = model_page_info["layout_dets"]
  468. allow_category_id_list = [3, 5, 13, 14, 15]
  469. """当成span拼接的"""
  470. # 3: 'image', # 图片
  471. # 5: 'table', # 表格
  472. # 13: 'inline_equation', # 行内公式
  473. # 14: 'interline_equation', # 行间公式
  474. # 15: 'text', # ocr识别文本
  475. for layout_det in layout_dets:
  476. category_id = layout_det["category_id"]
  477. if category_id in allow_category_id_list:
  478. span = {
  479. "bbox": layout_det["bbox"],
  480. "score": layout_det["score"]
  481. }
  482. if category_id == 3:
  483. span["type"] = ContentType.Image
  484. elif category_id == 5:
  485. span["type"] = ContentType.Table
  486. elif category_id == 13:
  487. span["content"] = layout_det["latex"]
  488. span["type"] = ContentType.InlineEquation
  489. elif category_id == 14:
  490. span["content"] = layout_det["latex"]
  491. span["type"] = ContentType.InterlineEquation
  492. elif category_id == 15:
  493. span["content"] = layout_det["text"]
  494. span["type"] = ContentType.Text
  495. all_spans.append(span)
  496. return remove_duplicate_spans(all_spans)
  497. def get_page_size(self, page_no: int): # 获取页面宽高
  498. # 获取当前页的page对象
  499. page = self.__docs[page_no]
  500. # 获取当前页的宽高
  501. page_w = page.rect.width
  502. page_h = page.rect.height
  503. return page_w, page_h
  504. def __get_blocks_by_type(
  505. self, type: int, page_no: int, extra_col: list[str] = []
  506. ) -> list:
  507. blocks = []
  508. for page_dict in self.__model_list:
  509. layout_dets = page_dict.get("layout_dets", [])
  510. page_info = page_dict.get("page_info", {})
  511. page_number = page_info.get("page_no", -1)
  512. if page_no != page_number:
  513. continue
  514. for item in layout_dets:
  515. category_id = item.get("category_id", -1)
  516. bbox = item.get("bbox", None)
  517. if category_id == type:
  518. block = {
  519. "bbox": bbox,
  520. "score": item.get("score"),
  521. }
  522. for col in extra_col:
  523. block[col] = item.get(col, None)
  524. blocks.append(block)
  525. return blocks
  526. def get_model_list(self, page_no):
  527. return self.__model_list[page_no]
  528. if __name__ == "__main__":
  529. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  530. if 0:
  531. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  532. model_file_path = r"linshixuqiu\19983-00_new.json"
  533. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  534. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  535. model_list = json.loads(model_json_txt)
  536. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  537. img_bucket_path = "imgs"
  538. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  539. pdf_docs = fitz.open("pdf", pdf_bytes)
  540. magic_model = MagicModel(model_list, pdf_docs)
  541. if 1:
  542. model_list = json.loads(
  543. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  544. )
  545. pdf_bytes = drw.read(
  546. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  547. )
  548. pdf_docs = fitz.open("pdf", pdf_bytes)
  549. magic_model = MagicModel(model_list, pdf_docs)
  550. for i in range(7):
  551. print(magic_model.get_imgs(i))