| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- import re
- from typing import Literal
- from mineru.utils.boxbase import bbox_distance, is_in
- from mineru.utils.enum_class import BlockType
- from mineru.backend.vlm.vlm_middle_json_mkcontent import merge_para_with_text
- def __reduct_overlap(bboxes):
- N = len(bboxes)
- keep = [True] * N
- for i in range(N):
- for j in range(N):
- if i == j:
- continue
- if is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
- keep[i] = False
- return [bboxes[i] for i in range(N) if keep[i]]
- def __tie_up_category_by_distance_v3(
- blocks: list,
- subject_block_type: str,
- object_block_type: str,
- ):
- subjects = __reduct_overlap(
- list(
- map(
- lambda x: {"bbox": x["bbox"], "lines": x["lines"], "index": x["index"]},
- filter(
- lambda x: x["type"] == subject_block_type,
- blocks,
- ),
- )
- )
- )
- objects = __reduct_overlap(
- list(
- map(
- lambda x: {"bbox": x["bbox"], "lines": x["lines"], "index": x["index"]},
- filter(
- lambda x: x["type"] == object_block_type,
- blocks,
- ),
- )
- )
- )
- ret = []
- N, M = len(subjects), len(objects)
- subjects.sort(key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2)
- objects.sort(key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2)
- OBJ_IDX_OFFSET = 10000
- SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
- all_boxes_with_idx = [(i, SUB_BIT_KIND, sub["bbox"][0], sub["bbox"][1]) for i, sub in enumerate(subjects)] + [
- (i + OBJ_IDX_OFFSET, OBJ_BIT_KIND, obj["bbox"][0], obj["bbox"][1]) for i, obj in enumerate(objects)
- ]
- seen_idx = set()
- seen_sub_idx = set()
- while N > len(seen_sub_idx):
- candidates = []
- for idx, kind, x0, y0 in all_boxes_with_idx:
- if idx in seen_idx:
- continue
- candidates.append((idx, kind, x0, y0))
- if len(candidates) == 0:
- break
- left_x = min([v[2] for v in candidates])
- top_y = min([v[3] for v in candidates])
- candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y) ** 2)
- fst_idx, fst_kind, left_x, top_y = candidates[0]
- candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y) ** 2)
- nxt = None
- for i in range(1, len(candidates)):
- if candidates[i][1] ^ fst_kind == 1:
- nxt = candidates[i]
- break
- if nxt is None:
- break
- if fst_kind == SUB_BIT_KIND:
- sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
- else:
- sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
- pair_dis = bbox_distance(subjects[sub_idx]["bbox"], objects[obj_idx]["bbox"])
- nearest_dis = float("inf")
- for i in range(N):
- if i in seen_idx or i == sub_idx:
- continue
- nearest_dis = min(nearest_dis, bbox_distance(subjects[i]["bbox"], objects[obj_idx]["bbox"]))
- if pair_dis >= 3 * nearest_dis:
- seen_idx.add(sub_idx)
- continue
- seen_idx.add(sub_idx)
- seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
- seen_sub_idx.add(sub_idx)
- ret.append(
- {
- "sub_bbox": {
- "bbox": subjects[sub_idx]["bbox"],
- "lines": subjects[sub_idx]["lines"],
- "index": subjects[sub_idx]["index"],
- },
- "obj_bboxes": [
- {"bbox": objects[obj_idx]["bbox"], "lines": objects[obj_idx]["lines"], "index": objects[obj_idx]["index"]}
- ],
- "sub_idx": sub_idx,
- }
- )
- for i in range(len(objects)):
- j = i + OBJ_IDX_OFFSET
- if j in seen_idx:
- continue
- seen_idx.add(j)
- nearest_dis, nearest_sub_idx = float("inf"), -1
- for k in range(len(subjects)):
- dis = bbox_distance(objects[i]["bbox"], subjects[k]["bbox"])
- if dis < nearest_dis:
- nearest_dis = dis
- nearest_sub_idx = k
- for k in range(len(subjects)):
- if k != nearest_sub_idx:
- continue
- if k in seen_sub_idx:
- for kk in range(len(ret)):
- if ret[kk]["sub_idx"] == k:
- ret[kk]["obj_bboxes"].append(
- {"bbox": objects[i]["bbox"], "lines": objects[i]["lines"], "index": objects[i]["index"]}
- )
- break
- else:
- ret.append(
- {
- "sub_bbox": {
- "bbox": subjects[k]["bbox"],
- "lines": subjects[k]["lines"],
- "index": subjects[k]["index"],
- },
- "obj_bboxes": [
- {"bbox": objects[i]["bbox"], "lines": objects[i]["lines"], "index": objects[i]["index"]}
- ],
- "sub_idx": k,
- }
- )
- seen_sub_idx.add(k)
- seen_idx.add(k)
- for i in range(len(subjects)):
- if i in seen_sub_idx:
- continue
- ret.append(
- {
- "sub_bbox": {
- "bbox": subjects[i]["bbox"],
- "lines": subjects[i]["lines"],
- "index": subjects[i]["index"],
- },
- "obj_bboxes": [],
- "sub_idx": i,
- }
- )
- return ret
- def get_type_blocks(blocks, block_type: Literal["image", "table"]):
- with_captions = __tie_up_category_by_distance_v3(blocks, f"{block_type}_body", f"{block_type}_caption")
- with_footnotes = __tie_up_category_by_distance_v3(blocks, f"{block_type}_body", f"{block_type}_footnote")
- ret = []
- for v in with_captions:
- record = {
- f"{block_type}_body": v["sub_bbox"],
- f"{block_type}_caption_list": v["obj_bboxes"],
- }
- filter_idx = v["sub_idx"]
- d = next(filter(lambda x: x["sub_idx"] == filter_idx, with_footnotes))
- record[f"{block_type}_footnote_list"] = d["obj_bboxes"]
- ret.append(record)
- return ret
- def fix_two_layer_blocks(blocks, fix_type: Literal["image", "table"]):
- need_fix_blocks = get_type_blocks(blocks, fix_type)
- fixed_blocks = []
- for block in need_fix_blocks:
- body = block[f"{fix_type}_body"]
- caption_list = block[f"{fix_type}_caption_list"]
- footnote_list = block[f"{fix_type}_footnote_list"]
- body["type"] = f"{fix_type}_body"
- for caption in caption_list:
- caption["type"] = f"{fix_type}_caption"
- for footnote in footnote_list:
- footnote["type"] = f"{fix_type}_footnote"
- two_layer_block = {
- "type": fix_type,
- "bbox": body["bbox"],
- "blocks": [
- body,
- ],
- "index": body["index"],
- }
- two_layer_block["blocks"].extend([*caption_list, *footnote_list])
- fixed_blocks.append(two_layer_block)
- return fixed_blocks
- def fix_title_blocks(blocks):
- for block in blocks:
- if block["type"] == BlockType.TITLE:
- title_content = merge_para_with_text(block)
- title_level = count_leading_hashes(title_content)
- block['level'] = title_level
- for line in block['lines']:
- for span in line['spans']:
- span['content'] = strip_leading_hashes(span['content'])
- break
- break
- return blocks
- def count_leading_hashes(text):
- match = re.match(r'^(#+)', text)
- return len(match.group(1)) if match else 0
- def strip_leading_hashes(text):
- # 去除开头的#和紧随其后的空格
- return re.sub(r'^#+\s*', '', text)
|