| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- """
- 布局处理的公共工具类
- 包含两个MagicModel类中重复使用的方法和逻辑
- """
- from typing import List, Dict, Any, Union
- from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in
- def reduct_overlap(bboxes: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
- """
- 去除重叠的bbox,保留不被其他bbox包含的bbox
- Args:
- bboxes: 包含bbox信息的字典列表
- Returns:
- 去重后的bbox列表
- """
- N = len(bboxes)
- keep = [True] * N
- for i in range(N):
- for j in range(N):
- if i == j:
- continue
- if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
- keep[i] = False
- return [bboxes[i] for i in range(N) if keep[i]]
- def bbox_distance_with_relative_check(bbox1: List[int], bbox2: List[int]) -> float:
- """
- 计算两个bbox之间的距离,考虑相对位置约束
- Args:
- bbox1: 第一个bbox [x1, y1, x2, y2]
- bbox2: 第二个bbox [x1, y1, x2, y2]
- Returns:
- 距离值,如果不满足条件返回无穷大
- """
- left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
- flags = [left, right, bottom, top]
- count = sum([1 if v else 0 for v in flags])
- if count > 1:
- return float('inf')
- if left or right:
- l1 = bbox1[3] - bbox1[1]
- l2 = bbox2[3] - bbox2[1]
- else:
- l1 = bbox1[2] - bbox1[0]
- l2 = bbox2[2] - bbox2[0]
- if l2 > l1 and (l2 - l1) / l1 > 0.3:
- return float('inf')
- return bbox_distance(bbox1, bbox2)
- def tie_up_category_by_distance_v3(
- data_source: Union[List[Dict], Dict],
- subject_category_filter,
- object_category_filter,
- extract_bbox_func=None,
- extract_score_func=None,
- create_item_func=None
- ) -> List[Dict[str, Any]]:
- """
- 基于距离关联不同类型的区块/元素
- Args:
- data_source: 数据源,可以是列表或包含layout_dets的字典
- subject_category_filter: 主体类别过滤函数或值
- object_category_filter: 对象类别过滤函数或值
- extract_bbox_func: 提取bbox的函数,默认使用'bbox'键
- extract_score_func: 提取score的函数,默认使用'score'键
- create_item_func: 创建返回项的函数
- Returns:
- 关联结果列表
- """
- # 默认函数
- if extract_bbox_func is None:
- extract_bbox_func = lambda x: x['bbox']
- if extract_score_func is None:
- extract_score_func = lambda x: x['score']
- if create_item_func is None:
- create_item_func = lambda x: {'bbox': extract_bbox_func(x), 'score': extract_score_func(x)}
- # 处理数据源
- if isinstance(data_source, dict) and 'layout_dets' in data_source:
- items = data_source['layout_dets']
- else:
- items = data_source
- # 过滤主体和对象
- if callable(subject_category_filter):
- subjects = list(filter(subject_category_filter, items))
- else:
- subjects = list(filter(lambda x: x.get('category_id') == subject_category_filter or x.get('type') == subject_category_filter, items))
- if callable(object_category_filter):
- objects = list(filter(object_category_filter, items))
- else:
- objects = list(filter(lambda x: x.get('category_id') == object_category_filter or x.get('type') == object_category_filter, items))
- # 转换为标准格式并去重
- subjects = reduct_overlap([create_item_func(x) for x in subjects])
- objects = reduct_overlap([create_item_func(x) for x in objects])
- ret = []
- N, M = len(subjects), len(objects)
- subjects.sort(key=lambda x: extract_bbox_func(x)[0] ** 2 + extract_bbox_func(x)[1] ** 2)
- objects.sort(key=lambda x: extract_bbox_func(x)[0] ** 2 + extract_bbox_func(x)[1] ** 2)
- OBJ_IDX_OFFSET = 10000
- SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
- all_boxes_with_idx = [(i, SUB_BIT_KIND, extract_bbox_func(sub)[0], extract_bbox_func(sub)[1]) for i, sub in enumerate(subjects)] + \
- [(i + OBJ_IDX_OFFSET, OBJ_BIT_KIND, extract_bbox_func(obj)[0], extract_bbox_func(obj)[1]) for i, obj in enumerate(objects)]
- seen_idx = set()
- seen_sub_idx = set()
- while N > len(seen_sub_idx):
- candidates = []
- for idx, kind, x0, y0 in all_boxes_with_idx:
- if idx in seen_idx:
- continue
- candidates.append((idx, kind, x0, y0))
- if len(candidates) == 0:
- break
- left_x = min([v[2] for v in candidates])
- top_y = min([v[3] for v in candidates])
- candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y) ** 2)
- fst_idx, fst_kind, left_x, top_y = candidates[0]
- fst_bbox = extract_bbox_func(subjects[fst_idx]) if fst_kind == SUB_BIT_KIND else extract_bbox_func(objects[fst_idx - OBJ_IDX_OFFSET])
- candidates.sort(
- key=lambda x: bbox_distance(fst_bbox, extract_bbox_func(subjects[x[0]])) if x[1] == SUB_BIT_KIND else bbox_distance(
- fst_bbox, extract_bbox_func(objects[x[0] - OBJ_IDX_OFFSET])))
- nxt = None
- for i in range(1, len(candidates)):
- if candidates[i][1] ^ fst_kind == 1:
- nxt = candidates[i]
- break
- if nxt is None:
- break
- if fst_kind == SUB_BIT_KIND:
- sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
- else:
- sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
- pair_dis = bbox_distance(extract_bbox_func(subjects[sub_idx]), extract_bbox_func(objects[obj_idx]))
- nearest_dis = float('inf')
- for i in range(N):
- # 取消原先算法中 1对1 匹配的偏置
- # if i in seen_idx or i == sub_idx:continue
- nearest_dis = min(nearest_dis, bbox_distance(extract_bbox_func(subjects[i]), extract_bbox_func(objects[obj_idx])))
- if pair_dis >= 3 * nearest_dis:
- seen_idx.add(sub_idx)
- continue
- seen_idx.add(sub_idx)
- seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
- seen_sub_idx.add(sub_idx)
- ret.append({
- 'sub_bbox': subjects[sub_idx],
- 'obj_bboxes': [objects[obj_idx]],
- 'sub_idx': sub_idx,
- })
- # 处理剩余的对象
- for i in range(len(objects)):
- j = i + OBJ_IDX_OFFSET
- if j in seen_idx:
- continue
- seen_idx.add(j)
- nearest_dis, nearest_sub_idx = float('inf'), -1
- for k in range(len(subjects)):
- dis = bbox_distance(extract_bbox_func(objects[i]), extract_bbox_func(subjects[k]))
- if dis < nearest_dis:
- nearest_dis = dis
- nearest_sub_idx = k
- for k in range(len(subjects)):
- if k != nearest_sub_idx:
- continue
- if k in seen_sub_idx:
- for kk in range(len(ret)):
- if ret[kk]['sub_idx'] == k:
- ret[kk]['obj_bboxes'].append(objects[i])
- break
- else:
- ret.append({
- 'sub_bbox': subjects[k],
- 'obj_bboxes': [objects[i]],
- 'sub_idx': k,
- })
- seen_sub_idx.add(k)
- seen_idx.add(k)
- # 处理剩余的主体
- for i in range(len(subjects)):
- if i in seen_sub_idx:
- continue
- ret.append({
- 'sub_bbox': subjects[i],
- 'obj_bboxes': [],
- 'sub_idx': i,
- })
- return ret
- def remove_high_iou_low_confidence(layout_dets: List[Dict], iou_threshold: float = 0.9):
- """
- 删除高IOU且置信度较低的检测结果
- Args:
- layout_dets: 布局检测结果列表
- iou_threshold: IOU阈值
- """
- need_remove_list = []
- for i in range(len(layout_dets)):
- for j in range(i + 1, len(layout_dets)):
- layout_det1 = layout_dets[i]
- layout_det2 = layout_dets[j]
- if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > iou_threshold:
- layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2
- if layout_det_need_remove not in need_remove_list:
- need_remove_list.append(layout_det_need_remove)
- for need_remove in need_remove_list:
- if need_remove in layout_dets:
- layout_dets.remove(need_remove)
- def remove_low_confidence(layout_dets: List[Dict], confidence_threshold: float = 0.05):
- """
- 删除置信度特别低的检测结果
- Args:
- layout_dets: 布局检测结果列表
- confidence_threshold: 置信度阈值
- """
- need_remove_list = []
- for layout_det in layout_dets:
- if layout_det['score'] <= confidence_threshold:
- need_remove_list.append(layout_det)
- for need_remove in need_remove_list:
- if need_remove in layout_dets:
- layout_dets.remove(need_remove)
|