para_split_by_model.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668
  1. from sklearn.cluster import DBSCAN
  2. import numpy as np
  3. from loguru import logger
  4. from magic_pdf.libs.boxbase import _is_in_or_part_overlap_with_area_ratio as is_in_layout
  5. from magic_pdf.libs.ocr_content_type import ContentType
  6. from magic_pdf.model.magic_model import MagicModel
  7. LINE_STOP_FLAG = ['.', '!', '?', '。', '!', '?', ":", ":", ")", ")", ";"]
  8. INLINE_EQUATION = ContentType.InlineEquation
  9. INTERLINE_EQUATION = ContentType.InterlineEquation
  10. TEXT = ContentType.Text
  11. def __get_span_text(span):
  12. c = span.get('content', '')
  13. if len(c) == 0:
  14. c = span.get('image_path', '')
  15. return c
  16. def __detect_list_lines(lines, new_layout_bboxes, lang):
  17. """
  18. 探测是否包含了列表,并且把列表的行分开.
  19. 这样的段落特点是,顶格字母大写/数字,紧跟着几行缩进的。缩进的行首字母含小写的。
  20. """
  21. def find_repeating_patterns(lst):
  22. indices = []
  23. ones_indices = []
  24. i = 0
  25. while i < len(lst) - 1: # 确保余下元素至少有2个
  26. if lst[i] == 1 and lst[i + 1] in [2, 3]: # 额外检查以防止连续出现的1
  27. start = i
  28. ones_in_this_interval = [i]
  29. i += 1
  30. while i < len(lst) and lst[i] in [2, 3]:
  31. i += 1
  32. # 验证下一个序列是否符合条件
  33. if i < len(lst) - 1 and lst[i] == 1 and lst[i + 1] in [2, 3] and lst[i - 1] in [2, 3]:
  34. while i < len(lst) and lst[i] in [1, 2, 3]:
  35. if lst[i] == 1:
  36. ones_in_this_interval.append(i)
  37. i += 1
  38. indices.append((start, i - 1))
  39. ones_indices.append(ones_in_this_interval)
  40. else:
  41. i += 1
  42. else:
  43. i += 1
  44. return indices, ones_indices
  45. """===================="""
  46. def split_indices(slen, index_array):
  47. result = []
  48. last_end = 0
  49. for start, end in sorted(index_array):
  50. if start > last_end:
  51. # 前一个区间结束到下一个区间开始之间的部分标记为"text"
  52. result.append(('text', last_end, start - 1))
  53. # 区间内标记为"list"
  54. result.append(('list', start, end))
  55. last_end = end + 1
  56. if last_end < slen:
  57. # 如果最后一个区间结束后还有剩余的字符串,将其标记为"text"
  58. result.append(('text', last_end, slen - 1))
  59. return result
  60. """===================="""
  61. if lang != 'en':
  62. return lines, None
  63. else:
  64. total_lines = len(lines)
  65. line_fea_encode = []
  66. """
  67. 对每一行进行特征编码,编码规则如下:
  68. 1. 如果行顶格,且大写字母开头或者数字开头,编码为1
  69. 2. 如果顶格,其他非大写开头编码为4
  70. 3. 如果非顶格,首字符大写,编码为2
  71. 4. 如果非顶格,首字符非大写编码为3
  72. """
  73. for l in lines:
  74. first_char = __get_span_text(l['spans'][0])[0]
  75. layout_left = __find_layout_bbox_by_line(l['bbox'], new_layout_bboxes)[0]
  76. if l['bbox'][0] == layout_left:
  77. if first_char.isupper() or first_char.isdigit():
  78. line_fea_encode.append(1)
  79. else:
  80. line_fea_encode.append(4)
  81. else:
  82. if first_char.isupper():
  83. line_fea_encode.append(2)
  84. else:
  85. line_fea_encode.append(3)
  86. # 然后根据编码进行分段, 选出来 1,2,3连续出现至少2次的行,认为是列表。
  87. list_indice, list_start_idx = find_repeating_patterns(line_fea_encode)
  88. if len(list_indice) > 0:
  89. logger.info(f"发现了列表,列表行数:{list_indice}, {list_start_idx}")
  90. # TODO check一下这个特列表里缩进的行左侧是不是对齐的。
  91. segments = []
  92. for start, end in list_indice:
  93. for i in range(start, end + 1):
  94. if i > 0:
  95. if line_fea_encode[i] == 4:
  96. logger.info(f"列表行的第{i}行不是顶格的")
  97. break
  98. else:
  99. logger.info(f"列表行的第{start}到第{end}行是列表")
  100. return split_indices(total_lines, list_indice), list_start_idx
  101. def __valign_lines(blocks, layout_bboxes):
  102. """
  103. 在一个layoutbox内对齐行的左侧和右侧。
  104. 扫描行的左侧和右侧,如果x0, x1差距不超过一个阈值,就强行对齐到所处layout的左右两侧(和layout有一段距离)。
  105. 3是个经验值,TODO,计算得来,可以设置为1.5个正文字符。
  106. """
  107. min_distance = 3
  108. min_sample = 2
  109. new_layout_bboxes = []
  110. for layout_box in layout_bboxes:
  111. blocks_in_layoutbox = [b for b in blocks if is_in_layout(b['bbox'], layout_box['layout_bbox'])]
  112. if len(blocks_in_layoutbox) == 0:
  113. continue
  114. x0_lst = np.array([[line['bbox'][0], 0] for block in blocks_in_layoutbox for line in block['lines']])
  115. x1_lst = np.array([[line['bbox'][2], 0] for block in blocks_in_layoutbox for line in block['lines']])
  116. x0_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x0_lst)
  117. x1_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x1_lst)
  118. x0_uniq_label = np.unique(x0_clusters.labels_)
  119. x1_uniq_label = np.unique(x1_clusters.labels_)
  120. x0_2_new_val = {} # 存储旧值对应的新值映射
  121. x1_2_new_val = {}
  122. for label in x0_uniq_label:
  123. if label == -1:
  124. continue
  125. x0_index_of_label = np.where(x0_clusters.labels_ == label)
  126. x0_raw_val = x0_lst[x0_index_of_label][:, 0]
  127. x0_new_val = np.min(x0_lst[x0_index_of_label][:, 0])
  128. x0_2_new_val.update({idx: x0_new_val for idx in x0_raw_val})
  129. for label in x1_uniq_label:
  130. if label == -1:
  131. continue
  132. x1_index_of_label = np.where(x1_clusters.labels_ == label)
  133. x1_raw_val = x1_lst[x1_index_of_label][:, 0]
  134. x1_new_val = np.max(x1_lst[x1_index_of_label][:, 0])
  135. x1_2_new_val.update({idx: x1_new_val for idx in x1_raw_val})
  136. for block in blocks_in_layoutbox:
  137. for line in block['lines']:
  138. x0, x1 = line['bbox'][0], line['bbox'][2]
  139. if x0 in x0_2_new_val:
  140. line['bbox'][0] = int(x0_2_new_val[x0])
  141. if x1 in x1_2_new_val:
  142. line['bbox'][2] = int(x1_2_new_val[x1])
  143. # 其余对不齐的保持不动
  144. # 由于修改了block里的line长度,现在需要重新计算block的bbox
  145. for block in blocks_in_layoutbox:
  146. block['bbox'] = [min([line['bbox'][0] for line in block['lines']]),
  147. min([line['bbox'][1] for line in block['lines']]),
  148. max([line['bbox'][2] for line in block['lines']]),
  149. max([line['bbox'][3] for line in block['lines']])]
  150. """新计算layout的bbox,因为block的bbox变了。"""
  151. layout_x0 = min([block['bbox'][0] for block in blocks_in_layoutbox])
  152. layout_y0 = min([block['bbox'][1] for block in blocks_in_layoutbox])
  153. layout_x1 = max([block['bbox'][2] for block in blocks_in_layoutbox])
  154. layout_y1 = max([block['bbox'][3] for block in blocks_in_layoutbox])
  155. new_layout_bboxes.append([layout_x0, layout_y0, layout_x1, layout_y1])
  156. return new_layout_bboxes
  157. def __align_text_in_layout(blocks, layout_bboxes):
  158. """
  159. 由于ocr出来的line,有时候会在前后有一段空白,这个时候需要对文本进行对齐,超出的部分被layout左右侧截断。
  160. """
  161. for layout in layout_bboxes:
  162. lb = layout['layout_bbox']
  163. blocks_in_layoutbox = [b for b in blocks if is_in_layout(b['bbox'], lb)]
  164. if len(blocks_in_layoutbox) == 0:
  165. continue
  166. for block in blocks_in_layoutbox:
  167. for line in block['lines']:
  168. x0, x1 = line['bbox'][0], line['bbox'][2]
  169. if x0 < lb[0]:
  170. line['bbox'][0] = lb[0]
  171. if x1 > lb[2]:
  172. line['bbox'][2] = lb[2]
  173. def __common_pre_proc(blocks, layout_bboxes):
  174. """
  175. 不分语言的,对文本进行预处理
  176. """
  177. # __add_line_period(blocks, layout_bboxes)
  178. __align_text_in_layout(blocks, layout_bboxes)
  179. aligned_layout_bboxes = __valign_lines(blocks, layout_bboxes)
  180. return aligned_layout_bboxes
  181. def __pre_proc_zh_blocks(blocks, layout_bboxes):
  182. """
  183. 对中文文本进行分段预处理
  184. """
  185. pass
  186. def __pre_proc_en_blocks(blocks, layout_bboxes):
  187. """
  188. 对英文文本进行分段预处理
  189. """
  190. pass
  191. def __group_line_by_layout(blocks, layout_bboxes, lang="en"):
  192. """
  193. 每个layout内的行进行聚合
  194. """
  195. # 因为只是一个block一行目前, 一个block就是一个段落
  196. lines_group = []
  197. blocks_group = []
  198. for lyout in layout_bboxes:
  199. lines = [line for block in blocks if is_in_layout(block['bbox'], lyout['layout_bbox']) for line in
  200. block['lines']]
  201. blocks = [block for block in blocks if is_in_layout(block['bbox'], lyout['layout_bbox'])]
  202. lines_group.append(lines)
  203. blocks_group.append(blocks)
  204. return lines_group, blocks_group
  205. def __split_para_in_layoutbox2(lines_group, new_layout_bbox, lang="en", char_avg_len=10):
  206. """
  207. """
  208. def __split_para_in_layoutbox(lines_group, new_layout_bbox, text_blocks, lang="en", char_avg_len=10):
  209. """
  210. lines_group 进行行分段——layout内部进行分段。lines_group内每个元素是一个Layoutbox内的所有行。
  211. 1. 先计算每个group的左右边界。
  212. 2. 然后根据行末尾特征进行分段。
  213. 末尾特征:以句号等结束符结尾。并且距离右侧边界有一定距离。
  214. 且下一行开头不留空白。
  215. """
  216. list_info = [] # 这个layout最后是不是列表,记录每一个layout里是不是列表开头,列表结尾
  217. layout_paras = []
  218. right_tail_distance = 1.5 * char_avg_len
  219. for lines in lines_group:
  220. paras = []
  221. total_lines = len(lines)
  222. if total_lines == 0:
  223. continue # 0行无需处理
  224. if total_lines == 1: # 1行无法分段。
  225. layout_paras.append([lines])
  226. list_info.append([False, False])
  227. continue
  228. """在进入到真正的分段之前,要对文字块从统计维度进行对齐方式的探测,
  229. 对齐方式分为以下:
  230. 1. 左对齐的文本块(特点是左侧顶格,或者左侧不顶格但是右侧顶格的行数大于非顶格的行数,顶格的首字母有大写也有小写)
  231. 1) 右侧对齐的行,单独成一段
  232. 2) 中间对齐的行,按照字体/行高聚合成一段
  233. 2. 左对齐的列表块(其特点是左侧顶格的行数小于等于非顶格的行数,非定格首字母会有小写,顶格90%是大写。并且左侧顶格行数大于1,大于1是为了这种模式连续出现才能称之为列表)
  234. 这样的文本块,顶格的为一个段落开头,紧随其后非顶格的行属于这个段落。
  235. """
  236. text_segments, list_start_line = __detect_list_lines(lines, new_layout_bbox, lang)
  237. """根据list_range,把lines分成几个部分
  238. """
  239. # layout_right = __find_layout_bbox_by_line(lines[0]['bbox'], new_layout_bbox)[2]
  240. # layout_left = __find_layout_bbox_by_line(lines[0]['bbox'], new_layout_bbox)[0]
  241. para = [] # 元素是line
  242. layout_list_info = [False, False] # 这个layout最后是不是列表,记录每一个layout里是不是列表开头,列表结尾
  243. for content_type, start, end in text_segments:
  244. if content_type == 'list':
  245. if start == 0:
  246. layout_list_info[0] = True
  247. if end == total_lines - 1:
  248. layout_list_info[1] = True
  249. # paras = __split_para_lines(lines, text_blocks)
  250. list_info.append(layout_list_info)
  251. # layout_paras.append(paras)
  252. return list_info
  253. def __split_para_lines(lines: list, text_blocks: list) -> list:
  254. text_paras = []
  255. other_paras = []
  256. text_lines = []
  257. for line in lines:
  258. spans_types = [span["type"] for span in line]
  259. if ContentType.Table in spans_types:
  260. other_paras.append([line])
  261. continue
  262. if ContentType.Image in spans_types:
  263. other_paras.append([line])
  264. continue
  265. if ContentType.InterlineEquation in spans_types:
  266. other_paras.append([line])
  267. continue
  268. text_lines.append(line)
  269. for block in text_blocks:
  270. block_bbox = block["bbox"]
  271. para = []
  272. for line in text_lines:
  273. bbox = line["bbox"]
  274. if is_in_layout(bbox, block_bbox):
  275. para.append(line)
  276. if len(para) > 0:
  277. text_paras.append(para)
  278. paras = other_paras.extend(text_paras)
  279. paras_sorted = sorted(paras, key = lambda x: x[0]["bbox"][1])
  280. return paras_sorted
  281. def __connect_list_inter_layout(layout_paras, blocks_group, new_layout_bbox, layout_list_info, page_num, lang):
  282. """
  283. 如果上个layout的最后一个段落是列表,下一个layout的第一个段落也是列表,那么将他们连接起来。 TODO 因为没有区分列表和段落,所以这个方法暂时不实现。
  284. 根据layout_list_info判断是不是列表。,下个layout的第一个段如果不是列表,那么看他们是否有几行都有相同的缩进。
  285. """
  286. if len(blocks_group) == 0 or len(blocks_group) == 0: # 0的时候最后的return 会出错
  287. return blocks_group, [False, False]
  288. for i in range(1, len(blocks_group)):
  289. pre_layout_list_info = layout_list_info[i - 1]
  290. next_layout_list_info = layout_list_info[i]
  291. pre_last_para = blocks_group[i - 1][-1]["lines"]
  292. next_paras = blocks_group[i]
  293. next_first_para = next_paras[0]
  294. if pre_layout_list_info[1] and not next_layout_list_info[0]: # 前一个是列表结尾,后一个是非列表开头,此时检测是否有相同的缩进
  295. logger.info(f"连接page {page_num} 内的list")
  296. # 向layout_paras[i] 寻找开头具有相同缩进的连续的行
  297. may_list_lines = []
  298. for j in range(len(next_paras)):
  299. lines = next_paras[j]["lines"]
  300. if len(lines) == 1: # 只可能是一行,多行情况再需要分析了
  301. if lines[0]['bbox'][0] > __find_layout_bbox_by_line(lines[0]['bbox'], new_layout_bbox)[0]:
  302. may_list_lines.append(lines[0])
  303. else:
  304. break
  305. else:
  306. break
  307. # 如果这些行的缩进是相等的,那么连到上一个layout的最后一个段落上。
  308. if len(may_list_lines) > 0 and len(set([x['bbox'][0] for x in may_list_lines])) == 1:
  309. pre_last_para.extend(may_list_lines)
  310. blocks_group[i] = blocks_group[i][len(may_list_lines):]
  311. # layout_paras[i] = layout_paras[i][len(may_list_lines):]
  312. return blocks_group, [layout_list_info[0][0], layout_list_info[-1][1]] # 同时还返回了这个页面级别的开头、结尾是不是列表的信息
  313. def __connect_list_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox, next_page_layout_bbox,
  314. pre_page_list_info, next_page_list_info, page_num, lang):
  315. """
  316. 如果上个layout的最后一个段落是列表,下一个layout的第一个段落也是列表,那么将他们连接起来。 TODO 因为没有区分列表和段落,所以这个方法暂时不实现。
  317. 根据layout_list_info判断是不是列表。,下个layout的第一个段如果不是列表,那么看他们是否有几行都有相同的缩进。
  318. """
  319. if len(pre_page_paras) == 0 or len(next_page_paras) == 0: # 0的时候最后的return 会出错
  320. return False
  321. if pre_page_list_info[1] and not next_page_list_info[0]: # 前一个是列表结尾,后一个是非列表开头,此时检测是否有相同的缩进
  322. logger.info(f"连接page {page_num} 内的list")
  323. # 向layout_paras[i] 寻找开头具有相同缩进的连续的行
  324. may_list_lines = []
  325. for j in range(len(next_page_paras[0])):
  326. line = next_page_paras[0][j]
  327. if len(line) == 1: # 只可能是一行,多行情况再需要分析了
  328. if line[0]['bbox'][0] > __find_layout_bbox_by_line(line[0]['bbox'], next_page_layout_bbox)[0]:
  329. may_list_lines.append(line[0])
  330. else:
  331. break
  332. else:
  333. break
  334. # 如果这些行的缩进是相等的,那么连到上一个layout的最后一个段落上。
  335. if len(may_list_lines) > 0 and len(set([x['bbox'][0] for x in may_list_lines])) == 1:
  336. pre_page_paras[-1].append(may_list_lines)
  337. next_page_paras[0] = next_page_paras[0][len(may_list_lines):]
  338. return True
  339. return False
  340. def __find_layout_bbox_by_line(line_bbox, layout_bboxes):
  341. """
  342. 根据line找到所在的layout
  343. """
  344. for layout in layout_bboxes:
  345. if is_in_layout(line_bbox, layout):
  346. return layout
  347. return None
  348. def __connect_para_inter_layoutbox(layout_paras, blocks_group, new_layout_bbox, lang):
  349. """
  350. layout之间进行分段。
  351. 主要是计算前一个layOut的最后一行和后一个layout的第一行是否可以连接。
  352. 连接的条件需要同时满足:
  353. 1. 上一个layout的最后一行沾满整个行。并且没有结尾符号。
  354. 2. 下一行开头不留空白。
  355. """
  356. connected_layout_paras = []
  357. connected_layout_blocks = []
  358. if len(blocks_group) == 0:
  359. return connected_layout_paras
  360. connected_layout_paras.append(layout_paras[0])
  361. connected_layout_blocks.append(blocks_group[0])
  362. for i in range(1, len(blocks_group)):
  363. try:
  364. if len(blocks_group[i]) == 0 or len(blocks_group[i - 1]) == 0: # TODO 考虑连接问题,
  365. continue
  366. pre_last_line = blocks_group[i - 1][-1]["lines"][-1]
  367. next_first_line = blocks_group[i][0]["lines"][0]
  368. except Exception as e:
  369. logger.error(f"page layout {i} has no line")
  370. continue
  371. pre_last_line_text = ''.join([__get_span_text(span) for span in pre_last_line['spans']])
  372. pre_last_line_type = pre_last_line['spans'][-1]['type']
  373. next_first_line_text = ''.join([__get_span_text(span) for span in next_first_line['spans']])
  374. next_first_line_type = next_first_line['spans'][0]['type']
  375. if pre_last_line_type not in [TEXT, INLINE_EQUATION] or next_first_line_type not in [TEXT, INLINE_EQUATION]:
  376. connected_layout_paras.append(layout_paras[i])
  377. continue
  378. pre_x2_max = __find_layout_bbox_by_line(pre_last_line['bbox'], new_layout_bbox)[2]
  379. next_x0_min = __find_layout_bbox_by_line(next_first_line['bbox'], new_layout_bbox)[0]
  380. pre_last_line_text = pre_last_line_text.strip()
  381. next_first_line_text = next_first_line_text.strip()
  382. if pre_last_line['bbox'][2] == pre_x2_max and pre_last_line_text[-1] not in LINE_STOP_FLAG and \
  383. next_first_line['bbox'][0] == next_x0_min: # 前面一行沾满了整个行,并且没有结尾符号.下一行没有空白开头。
  384. """连接段落条件成立,将前一个layout的段落和后一个layout的段落连接。"""
  385. connected_layout_paras[-1][-1].extend(layout_paras[i][0])
  386. layout_paras[i].pop(0) # 删除后一个layout的第一个段落, 因为他已经被合并到前一个layout的最后一个段落了。
  387. if len(layout_paras[i]) == 0:
  388. layout_paras.pop(i)
  389. else:
  390. connected_layout_paras.append(layout_paras[i])
  391. else:
  392. """连接段落条件不成立,将前一个layout的段落加入到结果中。"""
  393. connected_layout_paras.append(layout_paras[i])
  394. return connected_layout_paras
  395. def __connect_para_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox, next_page_layout_bbox, page_num,
  396. lang):
  397. """
  398. 连接起来相邻两个页面的段落——前一个页面最后一个段落和后一个页面的第一个段落。
  399. 是否可以连接的条件:
  400. 1. 前一个页面的最后一个段落最后一行沾满整个行。并且没有结尾符号。
  401. 2. 后一个页面的第一个段落第一行没有空白开头。
  402. """
  403. # 有的页面可能压根没有文字
  404. if len(pre_page_paras) == 0 or len(next_page_paras) == 0 or len(pre_page_paras[0]) == 0 or len(
  405. next_page_paras[0]) == 0: # TODO [[]]为什么出现在pre_page_paras里?
  406. return False
  407. pre_last_para = pre_page_paras[-1][-1]
  408. next_first_para = next_page_paras[0][0]
  409. pre_last_line = pre_last_para[-1]
  410. next_first_line = next_first_para[0]
  411. pre_last_line_text = ''.join([__get_span_text(span) for span in pre_last_line['spans']])
  412. pre_last_line_type = pre_last_line['spans'][-1]['type']
  413. next_first_line_text = ''.join([__get_span_text(span) for span in next_first_line['spans']])
  414. next_first_line_type = next_first_line['spans'][0]['type']
  415. if pre_last_line_type not in [TEXT, INLINE_EQUATION] or next_first_line_type not in [TEXT,
  416. INLINE_EQUATION]: # TODO,真的要做好,要考虑跨table, image, 行间的情况
  417. # 不是文本,不连接
  418. return False
  419. pre_x2_max = __find_layout_bbox_by_line(pre_last_line['bbox'], pre_page_layout_bbox)[2]
  420. next_x0_min = __find_layout_bbox_by_line(next_first_line['bbox'], next_page_layout_bbox)[0]
  421. pre_last_line_text = pre_last_line_text.strip()
  422. next_first_line_text = next_first_line_text.strip()
  423. if pre_last_line['bbox'][2] == pre_x2_max and pre_last_line_text[-1] not in LINE_STOP_FLAG and \
  424. next_first_line['bbox'][0] == next_x0_min: # 前面一行沾满了整个行,并且没有结尾符号.下一行没有空白开头。
  425. """连接段落条件成立,将前一个layout的段落和后一个layout的段落连接。"""
  426. pre_last_para.extend(next_first_para)
  427. next_page_paras[0].pop(0) # 删除后一个页面的第一个段落, 因为他已经被合并到前一个页面的最后一个段落了。
  428. return True
  429. else:
  430. return False
  431. def find_consecutive_true_regions(input_array):
  432. start_index = None # 连续True区域的起始索引
  433. regions = [] # 用于保存所有连续True区域的起始和结束索引
  434. for i in range(len(input_array)):
  435. # 如果我们找到了一个True值,并且当前并没有在连续True区域中
  436. if input_array[i] and start_index is None:
  437. start_index = i # 记录连续True区域的起始索引
  438. # 如果我们找到了一个False值,并且当前在连续True区域中
  439. elif not input_array[i] and start_index is not None:
  440. # 如果连续True区域长度大于1,那么将其添加到结果列表中
  441. if i - start_index > 1:
  442. regions.append((start_index, i - 1))
  443. start_index = None # 重置起始索引
  444. # 如果最后一个元素是True,那么需要将最后一个连续True区域加入到结果列表中
  445. if start_index is not None and len(input_array) - start_index > 1:
  446. regions.append((start_index, len(input_array) - 1))
  447. return regions
  448. def __connect_middle_align_text(page_paras, new_layout_bbox, page_num, lang, debug_mode):
  449. """
  450. 找出来中间对齐的连续单行文本,如果连续行高度相同,那么合并为一个段落。
  451. 一个line居中的条件是:
  452. 1. 水平中心点跨越layout的中心点。
  453. 2. 左右两侧都有空白
  454. """
  455. for layout_i, layout_para in enumerate(page_paras):
  456. layout_box = new_layout_bbox[layout_i]
  457. single_line_paras_tag = []
  458. for i in range(len(layout_para)):
  459. single_line_paras_tag.append(len(layout_para[i]) == 1 and layout_para[i][0]['spans'][0]['type'] == TEXT)
  460. """找出来连续的单行文本,如果连续行高度相同,那么合并为一个段落。"""
  461. consecutive_single_line_indices = find_consecutive_true_regions(single_line_paras_tag)
  462. if len(consecutive_single_line_indices) > 0:
  463. index_offset = 0
  464. """检查这些行是否是高度相同的,居中的"""
  465. for start, end in consecutive_single_line_indices:
  466. start += index_offset
  467. end += index_offset
  468. line_hi = np.array([line[0]['bbox'][3] - line[0]['bbox'][1] for line in layout_para[start:end + 1]])
  469. first_line_text = ''.join([__get_span_text(span) for span in layout_para[start][0]['spans']])
  470. if "Table" in first_line_text or "Figure" in first_line_text:
  471. pass
  472. if debug_mode:
  473. logger.info(line_hi.std())
  474. if line_hi.std() < 2:
  475. """行高度相同,那么判断是否居中"""
  476. all_left_x0 = [line[0]['bbox'][0] for line in layout_para[start:end + 1]]
  477. all_right_x1 = [line[0]['bbox'][2] for line in layout_para[start:end + 1]]
  478. layout_center = (layout_box[0] + layout_box[2]) / 2
  479. if all([x0 < layout_center < x1 for x0, x1 in zip(all_left_x0, all_right_x1)]) \
  480. and not all([x0 == layout_box[0] for x0 in all_left_x0]) \
  481. and not all([x1 == layout_box[2] for x1 in all_right_x1]):
  482. merge_para = [l[0] for l in layout_para[start:end + 1]]
  483. para_text = ''.join([__get_span_text(span) for line in merge_para for span in line['spans']])
  484. if debug_mode:
  485. logger.info(para_text)
  486. layout_para[start:end + 1] = [merge_para]
  487. index_offset -= end - start
  488. return
  489. def __merge_signle_list_text(page_paras, new_layout_bbox, page_num, lang):
  490. """
  491. 找出来连续的单行文本,如果首行顶格,接下来的几个单行段落缩进对齐,那么合并为一个段落。
  492. """
  493. pass
  494. def __do_split_page(blocks, layout_bboxes, new_layout_bbox, text_blocks, page_num, lang):
  495. """
  496. 根据line和layout情况进行分段
  497. 先实现一个根据行末尾特征分段的简单方法。
  498. """
  499. """
  500. 算法思路:
  501. 1. 扫描layout里每一行,找出来行尾距离layout有边界有一定距离的行。
  502. 2. 从上述行中找到末尾是句号等可作为断行标志的行。
  503. 3. 参照上述行尾特征进行分段。
  504. 4. 图、表,目前独占一行,不考虑分段。
  505. """
  506. lines_group, blocks_group = __group_line_by_layout(blocks, layout_bboxes, lang) # block内分段
  507. layout_list_info = __split_para_in_layoutbox(lines_group, new_layout_bbox, text_blocks, lang) # layout内分段
  508. blocks_group, page_list_info = __connect_list_inter_layout(layout_paras, blocks_group, new_layout_bbox, layout_list_info,
  509. page_num, lang) # layout之间连接列表段落
  510. connected_layout_paras = __connect_para_inter_layoutbox(layout_paras2, blocks_group, new_layout_bbox, lang) # layout间链接段落
  511. return connected_layout_paras, page_list_info
  512. def para_split(pdf_info_dict, debug_mode, magic_model: MagicModel, lang="en"):
  513. new_layout_of_pages = [] # 数组的数组,每个元素是一个页面的layoutS
  514. all_page_list_info = [] # 保存每个页面开头和结尾是否是列表
  515. for page_num, page in pdf_info_dict.items():
  516. blocks = page['preproc_blocks']
  517. layout_bboxes = page['layout_bboxes']
  518. text_blocks = magic_model.get_text_blocks(page_num)
  519. new_layout_bbox = __common_pre_proc(blocks, layout_bboxes)
  520. new_layout_of_pages.append(new_layout_bbox)
  521. splited_blocks, page_list_info = __do_split_page(blocks, layout_bboxes, new_layout_bbox, text_blocks, page_num, lang)
  522. all_page_list_info.append(page_list_info)
  523. page['para_blocks'] = splited_blocks
  524. """连接页面与页面之间的可能合并的段落"""
  525. pdf_infos = list(pdf_info_dict.values())
  526. for page_num, page in enumerate(pdf_info_dict.values()):
  527. if page_num == 0:
  528. continue
  529. pre_page_paras = pdf_infos[page_num - 1]['para_blocks']
  530. next_page_paras = pdf_infos[page_num]['para_blocks']
  531. pre_page_layout_bbox = new_layout_of_pages[page_num - 1]
  532. next_page_layout_bbox = new_layout_of_pages[page_num]
  533. is_conn = __connect_para_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox,
  534. next_page_layout_bbox, page_num, lang)
  535. if debug_mode:
  536. if is_conn:
  537. logger.info(f"连接了第{page_num - 1}页和第{page_num}页的段落")
  538. is_list_conn = __connect_list_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox,
  539. next_page_layout_bbox, all_page_list_info[page_num - 1],
  540. all_page_list_info[page_num], page_num, lang)
  541. if debug_mode:
  542. if is_list_conn:
  543. logger.info(f"连接了第{page_num - 1}页和第{page_num}页的列表段落")
  544. """接下来可能会漏掉一些特别的一些可以合并的内容,对他们进行段落连接
  545. 1. 正文中有时出现一个行顶格,接下来几行缩进的情况。
  546. 2. 居中的一些连续单行,如果高度相同,那么可能是一个段落。
  547. """
  548. for page_num, page in enumerate(pdf_info_dict.values()):
  549. page_paras = page['para_blocks']
  550. new_layout_bbox = new_layout_of_pages[page_num]
  551. __connect_middle_align_text(page_paras, new_layout_bbox, page_num, lang, debug_mode=debug_mode)
  552. __merge_signle_list_text(page_paras, new_layout_bbox, page_num, lang)