| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624 |
- import copy
- import math
- import re
- import numpy as np
- import inspect
- import warnings
- from collections import OrderedDict
- from typing import Optional, Tuple, Union, List, Dict, Any
- from dataclasses import dataclass, fields, is_dataclass
- import torch
- import torch.nn as nn
- from torch import Tensor
- import torch.nn.functional as F
- from torch.nn import CrossEntropyLoss
- class ModelOutput(OrderedDict):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- def __post_init__(self):
- class_fields = fields(self)
- if not len(class_fields):
- raise ValueError(f"{self.__class__.__name__} has no fields.")
- if not all(field.default is None for field in class_fields[1:]):
- raise ValueError(
- f"{self.__class__.__name__} should not have more than one required field."
- )
- first_field = getattr(self, class_fields[0].name)
- other_fields_are_none = all(
- getattr(self, field.name) is None for field in class_fields[1:]
- )
- if other_fields_are_none:
- if isinstance(first_field, dict):
- iterator = first_field.items()
- first_field_iterator = True
- else:
- try:
- iterator = iter(first_field)
- first_field_iterator = True
- except TypeError:
- first_field_iterator = False
- if first_field_iterator:
- for idx, element in enumerate(iterator):
- if (
- not isinstance(element, (list, tuple))
- or not len(element) == 2
- or not isinstance(element[0], str)
- ):
- if idx == 0:
- self[class_fields[0].name] = first_field
- else:
- raise ValueError(
- f"Cannot set key/value for {element}. It needs to be a tuple (key, value)."
- )
- break
- setattr(self, element[0], element[1])
- if element[1] is not None:
- self[element[0]] = element[1]
- elif first_field is not None:
- self[class_fields[0].name] = first_field
- else:
- for field in class_fields:
- v = getattr(self, field.name)
- if v is not None:
- self[field.name] = v
- def __delitem__(self, *args, **kwargs):
- raise Exception(
- f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance."
- )
- def setdefault(self, *args, **kwargs):
- raise Exception(
- f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance."
- )
- def pop(self, *args, **kwargs):
- raise Exception(
- f"You cannot use ``pop`` on a {self.__class__.__name__} instance."
- )
- def update(self, *args, **kwargs):
- raise Exception(
- f"You cannot use ``update`` on a {self.__class__.__name__} instance."
- )
- def __getitem__(self, k):
- if isinstance(k, str):
- inner_dict = dict(self.items())
- return inner_dict[k]
- else:
- return self.to_tuple()[k]
- def __setattr__(self, name, value):
- if name in self.keys() and value is not None:
- super().__setitem__(name, value)
- super().__setattr__(name, value)
- def __setitem__(self, key, value):
- super().__setitem__(key, value)
- super().__setattr__(key, value)
- def __reduce__(self):
- if not is_dataclass(self):
- return super().__reduce__()
- callable, _args, *remaining = super().__reduce__()
- args = tuple(getattr(self, field.name) for field in fields(self))
- return callable, args, *remaining
- def to_tuple(self):
- return tuple(self[k] for k in self.keys())
- @dataclass
- class BaseModelOutputWithPastAndCrossAttentions(ModelOutput):
- last_hidden_state = None
- past_key_values = None
- hidden_states = None
- attentions = None
- cross_attentions = None
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- @dataclass
- class Seq2SeqLMOutput(ModelOutput):
- loss = None
- logits = None
- past_key_values = None
- decoder_hidden_states = None
- decoder_attentions = None
- cross_attentions = None
- encoder_last_hidden_state = None
- encoder_hidden_states = None
- encoder_attentions = None
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- class MBartConfig(object):
- model_type = "mbart"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {
- "num_attention_heads": "encoder_attention_heads",
- "hidden_size": "d_model",
- }
- def __init__(
- self,
- vocab_size=50265,
- max_position_embeddings=1024,
- encoder_layers=12,
- encoder_ffn_dim=4096,
- encoder_attention_heads=16,
- decoder_layers=12,
- decoder_ffn_dim=4096,
- decoder_attention_heads=16,
- encoder_layerdrop=0.0,
- decoder_layerdrop=0.0,
- use_cache=True,
- is_encoder_decoder=True,
- activation_function="gelu",
- d_model=1024,
- dropout=0.1,
- output_hidden_states=False,
- use_return_dict=True,
- attention_dropout=0.0,
- activation_dropout=0.0,
- init_std=0.02,
- classifier_dropout=0.0,
- scale_embedding=False,
- pad_token_id=1,
- bos_token_id=0,
- eos_token_id=2,
- forced_eos_token_id=2,
- _attn_implementation="eager",
- hidden_size=1024,
- use_parallel=False,
- parallel_step=2,
- is_export=False,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.max_position_embeddings = max_position_embeddings
- self.d_model = d_model
- self.encoder_ffn_dim = encoder_ffn_dim
- self.encoder_layers = encoder_layers
- self.encoder_attention_heads = encoder_attention_heads
- self.decoder_ffn_dim = decoder_ffn_dim
- self.decoder_layers = decoder_layers
- self.decoder_attention_heads = decoder_attention_heads
- self.dropout = dropout
- self.output_hidden_states = output_hidden_states
- self.use_return_dict = use_return_dict
- self.attention_dropout = attention_dropout
- self.activation_dropout = activation_dropout
- self.activation_function = activation_function
- self.init_std = init_std
- self.encoder_layerdrop = encoder_layerdrop
- self.decoder_layerdrop = decoder_layerdrop
- self.classifier_dropout = classifier_dropout
- self.use_cache = use_cache
- self.num_hidden_layers = encoder_layers
- self.scale_embedding = (
- scale_embedding # scale factor will be sqrt(d_model) if True
- )
- self.pad_token_id = pad_token_id
- self.bos_token_id = bos_token_id
- self.eos_token_id = eos_token_id
- self.is_encoder_decoder = is_encoder_decoder
- self.forced_eos_token_id = forced_eos_token_id
- self._attn_implementation = _attn_implementation
- self.use_parallel = use_parallel
- self.parallel_step = parallel_step
- self.is_export = is_export
- super().__init__()
- @dataclass
- class AttentionMaskConverter:
- """
- A utility class for converting attention masks used in transformer models.
- This class handles the conversion of attention masks based on whether the
- attention mechanism is causal (i.e., preventing information flow from future
- tokens to past tokens) and whether a sliding window approach is used.
- Attributes:
- is_causal (bool): Indicates if the attention mechanism is causal.
- sliding_window (Optional[int]): Specifies the size of the sliding window
- for local attention, if applicable.
- Args:
- is_causal (bool): Determines if the attention mask should enforce causality.
- sliding_window (Optional[int], optional): The size of the sliding window
- for local attention. Default is None.
- """
- is_causal: bool
- sliding_window: int
- def __init__(self, is_causal: bool, sliding_window=None):
- self.is_causal = is_causal
- self.sliding_window = sliding_window
- if self.sliding_window is not None and self.sliding_window <= 0:
- raise ValueError(
- f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
- )
- @staticmethod
- def _make_causal_mask(
- input_ids_shape,
- dtype,
- past_key_values_length=0,
- sliding_window=None,
- is_export=False,
- ):
- bsz, tgt_len = input_ids_shape
- if is_export:
- mask = torch.full(
- [tgt_len, tgt_len], fill_value=torch.finfo(dtype).min, dtype=torch.float64
- )
- else:
- mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min)
- mask_cond = torch.arange(mask.shape[-1])
- mask = mask.masked_fill_(
- mask_cond < (mask_cond + 1).reshape([mask.shape[-1], 1]), 0
- )
- return mask[None, None, :, :].expand(
- [bsz, 1, tgt_len, tgt_len + past_key_values_length]
- )
- def to_4d_export(
- self,
- attention_mask_2d,
- query_length,
- dtype,
- key_value_length,
- is_export=False,
- ):
- input_shape = (attention_mask_2d.shape[0], query_length)
- expanded_attn_mask = self._expand_mask(
- attention_mask_2d, dtype, tgt_len=input_shape[-1]
- )
- expanded_4d_mask = expanded_attn_mask
- return expanded_4d_mask
- def to_4d(
- self,
- attention_mask_2d,
- query_length,
- dtype,
- key_value_length,
- is_export=False,
- ):
- input_shape = (attention_mask_2d.shape[0], query_length)
- causal_4d_mask = None
- if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
- if key_value_length is None:
- raise ValueError(
- "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
- )
- past_key_values_length = key_value_length - query_length
- causal_4d_mask = self._make_causal_mask(
- input_shape,
- dtype,
- past_key_values_length=past_key_values_length,
- sliding_window=self.sliding_window,
- is_export=is_export,
- )
- elif self.sliding_window is not None:
- raise NotImplementedError(
- "Sliding window is currently only implemented for causal masking"
- )
- expanded_attn_mask = self._expand_mask(
- attention_mask_2d, dtype, tgt_len=input_shape[-1]
- )
- if causal_4d_mask is not None:
- if is_export:
- expanded_attn_mask = causal_4d_mask
- return expanded_attn_mask
- else:
- expanded_attn_mask = causal_4d_mask.masked_fill_(
- expanded_attn_mask.to(torch.bool), torch.finfo(dtype).min
- )
- expanded_4d_mask = expanded_attn_mask
- return expanded_4d_mask
- def _expand_mask(self, mask, dtype, tgt_len=None):
- bsz, src_len = mask.shape
- tgt_len = tgt_len if tgt_len is not None else src_len
- expanded_mask = (
- mask[:, None, None, :].expand([bsz, 1, tgt_len, src_len]).to(dtype)
- )
- inverted_mask = 1.0 - expanded_mask
- return inverted_mask.masked_fill_(
- inverted_mask.to(torch.bool), torch.finfo(dtype).min
- )
- def _prepare_4d_attention_mask(mask, dtype, tgt_len=None):
- return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
- def _prepare_4d_causal_attention_mask_export(
- attention_mask,
- input_shape,
- inputs_embeds,
- past_key_values_length,
- sliding_window=None,
- is_export=False,
- ):
- attn_mask_converter = AttentionMaskConverter(
- is_causal=True, sliding_window=sliding_window
- )
- key_value_length = input_shape[-1] + past_key_values_length
- shape = attention_mask.shape
- len_shape = len(shape)
- attention_mask = attn_mask_converter.to_4d_export(
- attention_mask,
- input_shape[-1],
- key_value_length=key_value_length,
- dtype=inputs_embeds.dtype,
- is_export=is_export,
- )
- return attention_mask
- def _prepare_4d_causal_attention_mask(
- attention_mask,
- input_shape,
- inputs_embeds,
- past_key_values_length,
- sliding_window=None,
- is_export=False,
- ):
- attn_mask_converter = AttentionMaskConverter(
- is_causal=True, sliding_window=sliding_window
- )
- key_value_length = input_shape[-1] + past_key_values_length
- shape = attention_mask.shape
- len_shape = len(shape)
- if (attention_mask is not None) and (len_shape == 2):
- attention_mask = attn_mask_converter.to_4d(
- attention_mask,
- input_shape[-1],
- key_value_length=key_value_length,
- dtype=inputs_embeds.dtype,
- is_export=is_export,
- )
- return attention_mask
- elif attention_mask is not None and len(attention_mask.shape) == 4:
- expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
- if tuple(attention_mask.shape) != expected_shape:
- raise ValueError(
- f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
- )
- else:
- inverted_mask = 1.0 - attention_mask
- attention_mask = inverted_mask.masked_fill_(
- inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
- )
- else:
- attention_mask = attn_mask_converter.to_causal_4d(
- input_shape[0],
- input_shape[-1],
- key_value_length,
- dtype=inputs_embeds.dtype,
- )
- return attention_mask
- class MBartLearnedPositionalEmbedding(nn.Embedding):
- """
- This module learns positional embeddings up to a fixed maximum size.
- """
- def __init__(self, num_embeddings, embedding_dim):
- self.offset = 2
- super().__init__(num_embeddings + self.offset, embedding_dim)
- def forward(self, input_ids, past_key_values_length=0):
- """`input_ids' shape is expected to be [bsz x seqlen]."""
- bsz, seq_len = input_ids.shape[:2]
- positions = torch.arange(
- past_key_values_length, past_key_values_length + seq_len, dtype=torch.int64
- ).expand([bsz, -1])
- return nn.Embedding.forward(self, positions + self.offset)
- class MBartPreTrainedModel(nn.Module):
- base_model_prefix = "model"
- supports_gradient_checkpointing = True
- _no_split_modules = ["MBartDecoderLayer", "MBartAttention"]
- _supports_flash_attn_2 = True
- def __init__(self, config):
- super().__init__()
- self.config = config
- def _initialize_weights(self, module):
- """
- Initialize the weights if they are not already initialized.
- """
- if getattr(module, "_is_hf_initialized", False):
- return
- self._init_weights(module)
- def post_init(self):
- self.apply(self._initialize_weights)
- def _init_weights(self, module):
- std = self.config.init_std
- if isinstance(module, nn.Linear):
- torch.nn.init.normal_(module.weight, mean=0.0, std=std)
- if module.bias is not None:
- torch.nn.init.constant_(module.bias, val=0.0)
- elif isinstance(module, nn.Embedding):
- torch.nn.init.normal_(module.weight, mean=0.0, std=std)
- if module.padding_idx is not None:
- torch.nn.init.constant_(module.weight[module.padding_idx], val=0.0)
- @property
- def dummy_inputs(self):
- pad_token = self.config.pad_token_id
- input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]])
- dummy_inputs = {
- "attention_mask": input_ids.ne(pad_token),
- "input_ids": input_ids,
- }
- return dummy_inputs
- class MBartAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(
- self,
- embed_dim,
- num_heads,
- dropout: float = 0.0,
- is_decoder: bool = False,
- bias: bool = True,
- is_causal: bool = False,
- config=None,
- ):
- super().__init__()
- self.embed_dim = embed_dim
- self.num_heads = num_heads
- self.dropout = dropout
- self.head_dim = embed_dim // num_heads
- self.config = config
- if (self.head_dim * num_heads) != self.embed_dim:
- raise ValueError(
- f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
- f" and `num_heads`: {num_heads})."
- )
- self.scaling = self.head_dim ** -0.5
- self.is_decoder = is_decoder
- self.is_causal = is_causal
- self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- def _shape(self, tensor, seq_len, bsz):
- return tensor.reshape([bsz, seq_len, self.num_heads, self.head_dim]).permute(
- 0, 2, 1, 3
- )
- def forward(
- self,
- hidden_states,
- key_value_states=None,
- past_key_value=None,
- attention_mask=None,
- layer_head_mask=None,
- output_attentions=False,
- ):
- is_cross_attention = key_value_states is not None
- bsz, tgt_len, _ = hidden_states.shape
- query_states = self.q_proj(hidden_states) * self.scaling
- if (
- is_cross_attention
- and past_key_value is not None
- and past_key_value[0].shape[2] == key_value_states.shape[1]
- ):
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.concat([past_key_value[0], key_states], dim=2)
- value_states = torch.concat([past_key_value[1], value_states], dim=2)
- else:
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- if self.is_decoder:
- past_key_value = (key_states, value_states)
- proj_shape = (bsz * self.num_heads, -1, self.head_dim)
- query_states = self._shape(query_states, tgt_len, bsz).reshape(proj_shape)
- key_states = key_states.reshape(proj_shape)
- value_states = value_states.reshape(proj_shape)
- src_len = key_states.shape[1]
- attn_weights = torch.bmm(query_states, key_states.permute([0, 2, 1]))
- if attention_mask is not None:
- attn_weights = (
- attn_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
- + attention_mask
- )
- attn_weights = attn_weights.reshape(
- [bsz * self.num_heads, tgt_len, src_len]
- )
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
- if layer_head_mask is not None:
- if tuple(layer_head_mask.shape) != (self.num_heads,):
- raise ValueError(
- f"Head mask for a single layer should be of shape {(self.num_heads,)}, but is"
- f" {layer_head_mask.shape}"
- )
- attn_weights = layer_head_mask.reshape(
- [1, -1, 1, 1]
- ) * attn_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
- attn_weights = attn_weights.reshape(
- [bsz * self.num_heads, tgt_len, src_len]
- )
- if output_attentions:
- attn_weights_reshaped = attn_weights.reshape(
- [bsz, self.num_heads, tgt_len, src_len]
- )
- attn_weights = attn_weights_reshaped.reshape(
- [bsz * self.num_heads, tgt_len, src_len]
- )
- else:
- attn_weights_reshaped = None
- attn_probs = nn.functional.dropout(
- attn_weights, p=self.dropout, training=self.training
- )
- attn_output = torch.bmm(attn_probs, value_states)
- attn_output = attn_output.reshape([bsz, self.num_heads, tgt_len, self.head_dim])
- attn_output = attn_output.permute([0, 2, 1, 3])
- attn_output = attn_output.reshape([bsz, tgt_len, self.embed_dim])
- attn_output = self.out_proj(attn_output)
- return attn_output, attn_weights_reshaped, past_key_value
- MBART_ATTENTION_CLASSES = {
- "eager": MBartAttention,
- }
- class MBartDecoderLayer(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.embed_dim = config.d_model
- self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
- embed_dim=self.embed_dim,
- num_heads=config.decoder_attention_heads,
- dropout=config.attention_dropout,
- is_decoder=True,
- is_causal=True,
- config=config,
- )
- self.is_export = config.is_export
- self.dropout = config.dropout
- self.activation_fn = F.gelu
- self.activation_dropout = config.activation_dropout
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.encoder_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
- self.embed_dim,
- config.decoder_attention_heads,
- dropout=config.attention_dropout,
- is_decoder=True,
- config=config,
- )
- self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
- self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- layer_head_mask=None,
- cross_attn_layer_head_mask=None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- output_attentions: Optional[bool] = False,
- use_cache: Optional[bool] = True,
- ) -> torch.Tensor:
- residual = hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
- self_attn_past_key_value = (
- past_key_value[:2] if past_key_value is not None else None
- )
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
- hidden_states=hidden_states,
- past_key_value=self_attn_past_key_value,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
- hidden_states = nn.functional.dropout(
- hidden_states, p=self.dropout, training=self.training
- )
- hidden_states = residual + hidden_states
- cross_attn_present_key_value = None
- cross_attn_weights = None
- if encoder_hidden_states is not None:
- residual = hidden_states
- hidden_states = self.encoder_attn_layer_norm(hidden_states)
- cross_attn_past_key_value = (
- past_key_value[-2:] if past_key_value is not None else None
- )
- hidden_states, cross_attn_weights, cross_attn_present_key_value = (
- self.encoder_attn(
- hidden_states=hidden_states,
- key_value_states=encoder_hidden_states,
- attention_mask=encoder_attention_mask,
- layer_head_mask=cross_attn_layer_head_mask,
- past_key_value=cross_attn_past_key_value,
- output_attentions=output_attentions,
- )
- )
- hidden_states = nn.functional.dropout(
- hidden_states, p=self.dropout, training=self.training
- )
- hidden_states = residual + hidden_states
- present_key_value = present_key_value + cross_attn_present_key_value
- residual = hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
- hidden_states = self.activation_fn(self.fc1(hidden_states))
- hidden_states = nn.functional.dropout(
- hidden_states, p=self.activation_dropout, training=self.training
- )
- hidden_states = self.fc2(hidden_states)
- hidden_states = nn.functional.dropout(
- hidden_states, p=self.dropout, training=self.training
- )
- hidden_states = residual + hidden_states
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (self_attn_weights, cross_attn_weights)
- if self.is_export:
- outputs += (present_key_value,)
- else:
- if use_cache:
- outputs += (present_key_value,)
- return outputs
- class MBartForCausalLM(MBartPreTrainedModel):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(self, config):
- config = copy.deepcopy(config)
- config.is_decoder = True
- config.is_encoder_decoder = False
- super().__init__(config)
- self.model = MBartDecoderWrapper(config)
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- self.post_init()
- def get_input_embeddings(self):
- return self.model.decoder.embed_tokens
- def set_input_embeddings(self, value):
- self.model.decoder.embed_tokens = value
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- def set_decoder(self, decoder):
- self.model.decoder = decoder
- def get_decoder(self):
- return self.model.decoder
- def forward(
- self,
- input_ids=None,
- attention_mask=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- head_mask=None,
- cross_attn_head_mask=None,
- past_key_values=None,
- inputs_embeds=None,
- labels=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- ):
- output_attentions = (
- output_attentions
- if output_attentions is not None
- else self.config.output_attentions
- )
- output_hidden_states = (
- output_hidden_states
- if output_hidden_states is not None
- else self.config.output_hidden_states
- )
- return_dict = (
- return_dict if return_dict is not None else self.config.use_return_dict
- )
- outputs = self.model.decoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- head_mask=head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- logits = self.lm_head(outputs[0])
- loss = None
- if labels is not None:
- labels = labels
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(
- logits.reshape([-1, self.config.vocab_size]), labels.reshape([-1])
- )
- if not return_dict:
- output = (logits,) + outputs[1:]
- return (loss,) + output if loss is not None else output
- return CausalLMOutputWithCrossAttentions(
- loss=loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- cross_attentions=outputs.cross_attentions,
- )
- def prepare_inputs_for_generation(
- self,
- input_ids,
- past_key_values=None,
- attention_mask=None,
- use_cache=None,
- **kwargs,
- ):
- if attention_mask is None:
- attention_mask = input_ids.new_ones(input_ids.shape)
- if past_key_values:
- past_length = past_key_values[0][0].shape[2]
- if input_ids.shape[1] > past_length:
- remove_prefix_length = past_length
- else:
- remove_prefix_length = input_ids.shape[1] - 1
- input_ids = input_ids[:, remove_prefix_length:]
- return {
- "input_ids": input_ids,
- "attention_mask": attention_mask,
- "past_key_values": past_key_values,
- "use_cache": use_cache,
- }
- @staticmethod
- def _reorder_cache(past_key_values, beam_idx):
- reordered_past = ()
- for layer_past in past_key_values:
- reordered_past += (
- tuple(
- past_state.index_select(0, beam_idx) for past_state in layer_past
- ),
- )
- return reordered_past
- class myLayerNorm(nn.LayerNorm):
- """
- Custom implementation of Layer Normalization, with additional options.
- This class extends the standard LayerNorm to include optional features,
- such as drop block regularization, which might be used for improving
- model generalization.
- Args:
- num_channels (int): The number of features or channels in the input.
- eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-5.
- affine (bool, optional): If True, this module has learnable affine parameters (gamma and beta). Default is True.
- drop_block (optional): Additional regularization technique that might be applied. Default is None.
- """
- def __init__(
- self,
- num_channels,
- eps=1e-5,
- affine=True,
- drop_block=None,
- ):
- super(nn.LayerNorm, self).__init__()
- self._epsilon = eps
- self.num_channels = num_channels
- if affine:
- self.weight = torch.nn.Parameter(torch.randn([num_channels]) * 0.01)
- self.bias = torch.nn.Parameter(torch.randn([num_channels]) * 0.01)
- torch.nn.init.ones_(self.weight)
- torch.nn.init.zeros_(self.bias)
- def forward(self, x):
- x = F.layer_norm(
- x,
- [self.num_channels],
- weight=self.weight,
- bias=self.bias,
- eps=self._epsilon,
- )
- return x
- class MBartDecoder(MBartPreTrainedModel):
- """
- Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`]
- Args:
- config
- embed_tokens (nn.Embedding): output embedding
- """
- def __init__(self, config, embed_tokens=None):
- super().__init__(config)
- self.dropout = config.dropout
- self.layerdrop = config.decoder_layerdrop
- self.padding_idx = config.pad_token_id
- self.max_target_positions = config.max_position_embeddings
- self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
- self.embed_tokens = nn.Embedding(
- config.vocab_size, config.d_model, self.padding_idx
- )
- if embed_tokens is not None:
- self.embed_tokens.weight = embed_tokens.weight
- self.embed_positions = MBartLearnedPositionalEmbedding(
- config.max_position_embeddings,
- config.d_model,
- )
- self.layers = nn.ModuleList(
- [MBartDecoderLayer(config) for _ in range(config.decoder_layers)]
- )
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
- self.layernorm_embedding = myLayerNorm(config.d_model, affine=True)
- self.layer_norm = nn.LayerNorm(config.d_model)
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- self.is_export = config.is_export
- def get_input_embeddings(self):
- return self.embed_tokens
- def set_input_embeddings(self, value):
- self.embed_tokens = value
- def forward(
- self,
- input_ids=None,
- attention_mask=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- head_mask=None,
- cross_attn_head_mask=None,
- past_key_values=None,
- inputs_embeds=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- ):
- output_attentions = (
- output_attentions
- if output_attentions is not None
- else self.config.output_attentions
- )
- output_hidden_states = (
- output_hidden_states
- if output_hidden_states is not None
- else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = (
- return_dict if return_dict is not None else self.config.use_return_dict
- )
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError(
- "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
- )
- elif input_ids is not None:
- input = input_ids
- input_shape = input.shape
- input_ids = input_ids.reshape([-1, input_shape[-1]])
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.shape[:-1]
- input = inputs_embeds[:, :, -1]
- else:
- raise ValueError(
- "You have to specify either decoder_input_ids or decoder_inputs_embeds"
- )
- past_key_values_length = (
- past_key_values[0][0].shape[2] if past_key_values is not None else 0
- )
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
- if self._use_flash_attention_2:
- attention_mask = (
- attention_mask
- if (attention_mask is not None and 0 in attention_mask)
- else None
- )
- else:
- attention_mask = _prepare_4d_causal_attention_mask(
- attention_mask,
- input_shape,
- inputs_embeds,
- past_key_values_length,
- is_export=self.is_export,
- )
- if encoder_hidden_states is not None and encoder_attention_mask is not None:
- if self._use_flash_attention_2:
- encoder_attention_mask = (
- encoder_attention_mask if 0 in encoder_attention_mask else None
- )
- else:
- encoder_attention_mask = _prepare_4d_attention_mask(
- encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
- )
- # embed positions
- positions = self.embed_positions(input, past_key_values_length)
- hidden_states = inputs_embeds + positions
- hidden_states = self.layernorm_embedding(hidden_states)
- hidden_states = nn.functional.dropout(
- hidden_states, p=self.dropout, training=self.training
- )
- if self.gradient_checkpointing and self.training:
- if use_cache:
- print(
- "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
- )
- use_cache = False
- all_hidden_states = () if output_hidden_states else None
- all_self_attns = () if output_attentions else None
- all_cross_attentions = (
- () if (output_attentions and encoder_hidden_states is not None) else None
- )
- next_decoder_cache = () if use_cache else None
- for attn_mask, mask_name in zip(
- [head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]
- ):
- if attn_mask is not None:
- if attn_mask.shape[0] != len(self.layers):
- raise ValueError(
- f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
- f" {attn_mask.shape[0]}."
- )
- for idx, decoder_layer in enumerate(self.layers):
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.training:
- dropout_probability = torch.rand([])
- if dropout_probability < self.layerdrop:
- continue
- past_key_value = (
- past_key_values[idx] if past_key_values is not None else None
- )
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- decoder_layer.__call__,
- hidden_states,
- attention_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- head_mask[idx] if head_mask is not None else None,
- (
- cross_attn_head_mask[idx]
- if cross_attn_head_mask is not None
- else None
- ),
- None,
- output_attentions,
- use_cache,
- )
- else:
- layer_outputs = decoder_layer(
- hidden_states,
- attention_mask=attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- cross_attn_layer_head_mask=(
- cross_attn_head_mask[idx]
- if cross_attn_head_mask is not None
- else None
- ),
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
- if output_attentions:
- all_self_attns += (layer_outputs[1],)
- if encoder_hidden_states is not None:
- all_cross_attentions += (layer_outputs[2],)
- hidden_states = self.layer_norm(hidden_states)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- next_cache = next_decoder_cache if use_cache else None
- if not return_dict:
- return tuple(
- v
- for v in [
- hidden_states,
- next_cache,
- all_hidden_states,
- all_self_attns,
- all_cross_attentions,
- ]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- cross_attentions=all_cross_attentions,
- )
- class MBartDecoderWrapper(MBartPreTrainedModel):
- """
- This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
- used in combination with the [`EncoderDecoderModel`] framework.
- """
- def __init__(self, config):
- super().__init__(config)
- self.decoder = MBartDecoder(config)
- def forward(self, *args, **kwargs):
- return self.decoder(*args, **kwargs)
- def _in_projection(
- q: torch.Tensor,
- k: torch.Tensor,
- v: torch.Tensor,
- w_q: torch.Tensor,
- w_k: torch.Tensor,
- w_v: torch.Tensor,
- b_q: Optional[torch.Tensor] = None,
- b_k: Optional[torch.Tensor] = None,
- b_v: Optional[torch.Tensor] = None,
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- Eq, Ek, Ev = q.shape[-1], k.shape[-1], v.shape[-1]
- assert w_q.shape == (
- Eq,
- Eq,
- ), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
- assert w_k.shape == (
- Eq,
- Ek,
- ), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
- assert w_v.shape == (
- Eq,
- Ev,
- ), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
- assert b_q is None or b_q.shape == (
- Eq,
- ), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
- assert b_k is None or b_k.shape == (
- Eq,
- ), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
- assert b_v is None or b_v.shape == (
- Eq,
- ), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
- return linear(q, w_q.T, b_q), linear(k, w_k.T, b_k), linear(v, w_v.T, b_v)
- def _scaled_dot_product_attention(
- q: torch.Tensor,
- k: torch.Tensor,
- v: torch.Tensor,
- attn_mask: Optional[torch.Tensor] = None,
- dropout_p: float = 0.0,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- B, Nt, E = q.shape
- q = q / math.sqrt(E)
- attn = torch.bmm(q, k.permute([0, 2, 1]))
- if attn_mask is not None:
- attn += attn_mask
- attn = F.softmax(attn, dim=-1)
- if dropout_p > 0.0:
- attn = F.dropout(attn, p=dropout_p)
- output = torch.bmm(attn, v)
- return output, attn
- def linear(x, w, b, is_transpose):
- if is_transpose:
- w = w.T
- if b is not None:
- return torch.matmul(x, w) + b
- else:
- return torch.matmul(x, w)
- def _in_projection_packed(
- q: Tensor,
- k: Tensor,
- v: Tensor,
- w: Tensor,
- b: Optional[Tensor] = None,
- is_export=False,
- ) -> List[Tensor]:
- E = q.shape[-1]
- if k is v:
- if q is k:
- proj = linear(q, w, b, is_transpose=True)
- if is_export:
- B, D, L = proj.shape
- proj = proj.reshape([B, D, 3, E])
- proj = (
- proj.unsqueeze(0)
- .permute([3, 1, 2, 0, 4])
- .squeeze(-2)
- .contiguous()
- )
- else:
- proj = (
- proj.unflatten(-1, (3, E))
- .unsqueeze(0)
- .permute([3, 1, 2, 0, 4])
- .squeeze(-2)
- .contiguous()
- )
- return proj[0], proj[1], proj[2]
- else:
- w_q, w_k, w_v = w.chunk(3)
- if b is None:
- b_q = b_k = b_v = None
- else:
- b_q, b_k, b_v = b.chunk(3)
- return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
- def multi_head_attention_forward(
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- embed_dim_to_check: int,
- num_heads: int,
- in_proj_weight: torch.Tensor,
- in_proj_bias: Optional[torch.Tensor],
- bias_k: Optional[torch.Tensor],
- bias_v: Optional[torch.Tensor],
- add_zero_attn: bool,
- dropout_p: float,
- out_proj_weight: torch.Tensor,
- out_proj_bias: Optional[torch.Tensor],
- training: bool = True,
- key_padding_mask: Optional[torch.Tensor] = None,
- need_weights: bool = True,
- attn_mask: Optional[torch.Tensor] = None,
- use_separate_proj_weight: bool = False,
- q_proj_weight: Optional[torch.Tensor] = None,
- k_proj_weight: Optional[torch.Tensor] = None,
- v_proj_weight: Optional[torch.Tensor] = None,
- static_k: Optional[torch.Tensor] = None,
- static_v: Optional[torch.Tensor] = None,
- is_export=False,
- ):
- tgt_len, bsz, embed_dim = query.shape
- src_len, _, _ = key.shape
- if isinstance(embed_dim, torch.Tensor):
- head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
- else:
- head_dim = embed_dim // num_heads
- q, k, v = _in_projection_packed(
- query, key, value, in_proj_weight, in_proj_bias, is_export
- )
- if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
- warnings.warn(
- "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
- )
- key_padding_mask = key_padding_mask.to(torch.bool)
- if bias_k is not None and bias_v is not None: # False
- assert static_k is None, "bias cannot be added to static key."
- assert static_v is None, "bias cannot be added to static value."
- k = torch.concat([k, bias_k.repeat(1, bsz, 1)])
- v = torch.concat([v, bias_v.repeat(1, bsz, 1)])
- else:
- assert bias_k is None
- assert bias_v is None
- q = q.reshape([tgt_len, bsz * num_heads, head_dim]).permute([1, 0, 2])
- if static_k is None: # True
- k = k.reshape([k.shape[0], bsz * num_heads, head_dim]).permute([1, 0, 2])
- else:
- assert (
- static_k.shape[0] == bsz * num_heads
- ), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.shape[0]}"
- assert (
- static_k.shape[2] == head_dim
- ), f"expecting static_k.size(2) of {head_dim}, but got {static_k.shape[2]}"
- k = static_k
- if static_v is None: # True
- v = v.reshape([v.shape[0], bsz * num_heads, head_dim]).transpose([1, 0, 2])
- else:
- assert (
- static_v.shape[0] == bsz * num_heads
- ), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.shape[0]}"
- assert (
- static_v.shape[2] == head_dim
- ), f"expecting static_v.size(2) of {head_dim}, but got {static_v.shape[2]}"
- v = static_v
- src_len = k.shape[1]
- if not training:
- dropout_p = 0.0
- attn_output, attn_output_weights = _scaled_dot_product_attention(
- q, k, v, attn_mask, dropout_p
- )
- attn_output = attn_output.permute([1, 0, 2]).reshape([tgt_len, bsz, embed_dim])
- attn_output = linear(
- attn_output, out_proj_weight, out_proj_bias, is_transpose=False
- )
- if need_weights:
- attn_output_weights = attn_output_weights.reshape(
- [bsz, num_heads, tgt_len, src_len]
- )
- return attn_output, attn_output_weights.sum(dim=1) / num_heads
- else:
- return attn_output, None
- class MyMultiheadAttention(nn.Module):
- """
- Custom implementation of a multi-head attention layer.
- Attributes:
- __constants__ (list): List of constant attributes.
- bias_k (Optional[paddle.Tensor]): Optional tensor for key bias.
- bias_v (Optional[paddle.Tensor]): Optional tensor for value bias.
- Args:
- embed_dim (int): Total dimension of the model. This is the size of the input feature vectors.
- num_heads (int): Number of parallel attention heads. The input dimension must be divisible by the number of heads.
- dropout (float, optional): Dropout probability on the attention weights. Default is 0.0.
- bias (bool, optional): If True, adds a learnable bias to the output. Default is True.
- add_bias_kv (bool, optional): If True, adds bias to the key and value sequences. Default is False.
- add_zero_attn (bool, optional): If True, adds a zero attention head. Default is False.
- kdim (int, optional): Total number of features for keys. If None, defaults to embed_dim.
- vdim (int, optional): Total number of features for values. If None, defaults to embed_dim.
- batch_first (bool, optional): If True, the input and output tensors are provided as (batch, seq, feature). Default is False.
- device (optional): The device on which the layer's parameters should be initialized. Default is None.
- dtype (optional): The data type for the parameters. Default is None.
- is_export (bool, optional): If True, the layer is set up for export, potentially changing behavior for compatibility. Default is False.
- """
- __constants__ = ["batch_first"]
- bias_k: Optional[torch.Tensor]
- bias_v: Optional[torch.Tensor]
- def __init__(
- self,
- embed_dim,
- num_heads,
- dropout=0.0,
- bias=True,
- add_bias_kv=False,
- add_zero_attn=False,
- kdim=None,
- vdim=None,
- batch_first=False,
- device=None,
- dtype=None,
- is_export=False,
- ) -> None:
- super(MyMultiheadAttention, self).__init__()
- self.embed_dim = embed_dim
- self.kdim = kdim if kdim is not None else embed_dim
- self.vdim = vdim if vdim is not None else embed_dim
- self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
- self.num_heads = num_heads
- self.dropout = dropout
- self.batch_first = batch_first
- self.head_dim = embed_dim // num_heads
- self.is_export = is_export
- assert (
- self.head_dim * num_heads == self.embed_dim
- ), "embed_dim must be divisible by num_heads"
- if self._qkv_same_embed_dim is False:
- pass
- else:
- if dtype is None:
- dtype = torch.float32
- self.in_proj_weight = torch.nn.Parameter(torch.randn(3 * embed_dim, embed_dim) * 0.01)
- self.q_proj_weight = None
- self.k_proj_weight = None
- self.v_proj_weight = None
- if bias:
- self.in_proj_bias = torch.nn.Parameter(torch.randn(3 * embed_dim, ) * 0.01)
- torch.nn.init.zeros_(self.in_proj_bias)
- else:
- self.in_proj_bias = None
- self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- if add_bias_kv:
- pass
- else:
- self.bias_k = self.bias_v = None
- self.add_zero_attn = add_zero_attn
- self._reset_parameters()
- def _reset_parameters(self):
- if self._qkv_same_embed_dim:
- torch.nn.init.xavier_normal_(self.in_proj_weight)
- else:
- torch.nn.init.xavier_normal_(self.q_proj_weight)
- torch.nn.init.xavier_normal_(self.k_proj_weight)
- torch.nn.init.xavier_normal_(self.v_proj_weight)
- if self.in_proj_bias is not None:
- torch.nn.init.zeros_(self.in_proj_bias)
- torch.nn.init.zeros_(self.out_proj.bias)
- if self.bias_k is not None:
- torch.nn.init.xavier_normal_(self.bias_k)
- if self.bias_v is not None:
- torch.nn.init.xavier_normal_(self.bias_v)
- def forward(
- self,
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- key_padding_mask: Optional[torch.Tensor] = None,
- need_weights: bool = True,
- attn_mask: Optional[torch.Tensor] = None,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
- attn_output, attn_output_weights = multi_head_attention_forward(
- query,
- key,
- value,
- self.embed_dim,
- self.num_heads,
- self.in_proj_weight,
- self.in_proj_bias,
- self.bias_k,
- self.bias_v,
- self.add_zero_attn,
- self.dropout,
- self.out_proj.weight,
- self.out_proj.bias,
- training=self.training,
- key_padding_mask=key_padding_mask,
- need_weights=need_weights,
- attn_mask=attn_mask,
- is_export=self.is_export,
- )
- return attn_output, attn_output_weights
- class LogitsProcessorList(list):
- """
- A list of logits processors that can be applied sequentially.
- Methods:
- __call__(input_ids, scores, **kwargs): Apply all processors to the given inputs.
- """
- def __call__(self, input_ids, scores, **kwargs):
- for processor in self:
- function_args = inspect.signature(processor.__call__).parameters
- if len(function_args) > 2:
- if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
- raise ValueError(
- f"Make sure that all the required parameters: {list(function_args.keys())} for "
- f"{processor.__class__} are passed to the logits processor."
- )
- scores = processor(input_ids, scores, **kwargs)
- else:
- scores = processor(input_ids, scores)
- return scores
- class ForcedEOSTokenLogitsProcessor(object):
- """
- A processor that forces the generation of an end-of-sequence (EOS) token
- at a specified position in the sequence.
- This is typically used in language generation tasks to ensure that the
- generated sequence ends properly when it reaches a certain length.
- Args:
- max_length (int): The maximum length of the sequence. Forces EOS when this length is reached.
- eos_token_id (Union[int, List[int]]): The ID(s) of the EOS token(s) to be forced in the sequence.
- """
- def __init__(self, max_length: int, eos_token_id: Union[int, List[int]]):
- self.max_length = max_length
- if isinstance(eos_token_id, int):
- eos_token_id = [eos_token_id]
- self.eos_token_id = eos_token_id
- def __call__(self, input_ids, scores):
- cur_len = input_ids.shape[-1]
- scores_processed = scores
- if cur_len == self.max_length - 1:
- scores_processed = torch.full_like(scores, -math.inf)
- scores_processed[:, self.eos_token_id] = 0
- return scores_processed
- @dataclass
- class CausalLMOutputWithCrossAttentions(ModelOutput):
- loss = None
- logits = None
- past_key_values = None
- hidden_states = None
- attentions = None
- cross_attentions = None
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- @dataclass
- class CausalLMOutputWithCrossAttentionsAndCounting(ModelOutput):
- """
- Base class for causal language model (or autoregressive) outputs.
- """
- logits = None
- counting = None
- past_key_values = None
- hidden_states = None
- attentions = None
- cross_attentions = None
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- class CustomMBartDecoder(MBartDecoder):
- """
- A custom MBartDecoder that includes additional processing layers.
- This class extends the MBartDecoder by adding a customizable neural network
- component called `counting_context_weight`, which applies a series of linear
- transformations followed by ReLU activations. This can be used to modify or
- enhance the decoder's behavior for specific tasks.
- Args:
- config: The configuration object containing model parameters.
- """
- def __init__(self, config):
- super().__init__(config)
- hidden_size = config.d_model
- self.is_export = config.is_export
- self.counting_context_weight = nn.Sequential(
- nn.Linear(config.vocab_size, hidden_size),
- nn.ReLU(),
- nn.Linear(hidden_size, hidden_size),
- nn.ReLU(),
- nn.Linear(hidden_size, config.d_model),
- )
- def forward(
- self,
- input_ids=None,
- attention_mask=None,
- count_pred=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- head_mask=None,
- cross_attn_head_mask=None,
- past_key_values=None,
- inputs_embeds=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- ):
- self.is_export = False if self.training else True
- output_attentions = (
- output_attentions
- if output_attentions is not None
- else self.config.output_attentions
- )
- output_hidden_states = (
- output_hidden_states
- if output_hidden_states is not None
- else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = (
- return_dict if return_dict is not None else self.config.use_return_dict
- )
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError(
- "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
- )
- elif input_ids is not None:
- input = input_ids
- input_shape = input.shape
- input_ids = input_ids.reshape([-1, input_shape[-1]])
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.shape[:-1]
- input = inputs_embeds[:, :, -1]
- else:
- raise ValueError(
- "You have to specify either decoder_input_ids or decoder_inputs_embeds"
- )
- past_key_values_length = (
- past_key_values[0][0].shape[2] if past_key_values is not None else 0
- )
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
- if self._use_flash_attention_2:
- attention_mask = (
- attention_mask
- if (attention_mask is not None and 0 in attention_mask)
- else None
- )
- else:
- if self.is_export:
- attention_mask = _prepare_4d_causal_attention_mask_export(
- attention_mask,
- input_shape,
- inputs_embeds,
- past_key_values_length,
- is_export=self.is_export,
- ).to(torch.float32)
- else:
- attention_mask = _prepare_4d_causal_attention_mask(
- attention_mask,
- input_shape,
- inputs_embeds,
- past_key_values_length,
- is_export=self.is_export,
- )
- if encoder_hidden_states is not None and encoder_attention_mask is not None:
- if self._use_flash_attention_2:
- encoder_attention_mask = (
- encoder_attention_mask if 0 in encoder_attention_mask else None
- )
- else:
- encoder_attention_mask = _prepare_4d_attention_mask(
- encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
- )
- # embed positions
- positions = self.embed_positions(input, past_key_values_length)
- hidden_states = inputs_embeds + positions
- # TODO: add counting context weight to hidden_states
- if count_pred is not None:
- count_context_weight = self.counting_context_weight(count_pred)
- hidden_states = hidden_states + 0.5 * count_context_weight.unsqueeze(1)
- hidden_states = self.layernorm_embedding(hidden_states)
- hidden_states = nn.functional.dropout(
- hidden_states, p=self.dropout, training=self.training
- )
- if self.gradient_checkpointing and self.training:
- if use_cache:
- print(
- "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
- )
- use_cache = False
- # decoder layers
- all_hidden_states = () if output_hidden_states else None
- all_self_attns = () if output_attentions else None
- all_cross_attentions = (
- () if (output_attentions and encoder_hidden_states is not None) else None
- )
- next_decoder_cache = () if use_cache else None
- # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
- for attn_mask, mask_name in zip(
- [head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]
- ):
- if attn_mask is not None:
- if attn_mask.size()[0] != len(self.layers):
- raise ValueError(
- f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
- f" {attn_mask.size()[0]}."
- )
- for idx, decoder_layer in enumerate(self.layers):
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.training:
- dropout_probability = torch.rand()
- if dropout_probability < self.layerdrop:
- continue
- past_key_value = (
- past_key_values[idx] if past_key_values is not None else None
- )
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- decoder_layer.__call__,
- hidden_states,
- attention_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- head_mask[idx] if head_mask is not None else None,
- (
- cross_attn_head_mask[idx]
- if cross_attn_head_mask is not None
- else None
- ),
- None,
- output_attentions,
- use_cache,
- )
- else:
- layer_outputs = decoder_layer(
- hidden_states,
- attention_mask=attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- cross_attn_layer_head_mask=(
- cross_attn_head_mask[idx]
- if cross_attn_head_mask is not None
- else None
- ),
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- )
- hidden_states = layer_outputs[0]
- if self.is_export:
- next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
- else:
- if use_cache:
- next_decoder_cache += (
- layer_outputs[3 if output_attentions else 1],
- )
- if output_attentions:
- all_self_attns += (layer_outputs[1],)
- if encoder_hidden_states is not None:
- all_cross_attentions += (layer_outputs[2],)
- hidden_states = self.layer_norm(hidden_states)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.is_export:
- next_cache = next_decoder_cache
- else:
- next_cache = next_decoder_cache if use_cache else None
- if not self.is_export:
- if not return_dict:
- return tuple(
- v
- for v in [
- hidden_states,
- next_cache,
- all_hidden_states,
- all_self_attns,
- all_cross_attentions,
- ]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- cross_attentions=all_cross_attentions,
- )
- class SelfAttentionBlock(nn.Module):
- """
- A self-attention block that implements multi-head self-attention
- followed by a feed-forward network, typically used in transformer architectures.
- Args:
- embed_size (int): The size of the embedding vector.
- num_heads (int): The number of attention heads.
- is_export (bool): Flag indicating whether to configure the layer for export.
- """
- def __init__(self, embed_size, num_heads, is_export):
- super(SelfAttentionBlock, self).__init__()
- self.self_attention = MyMultiheadAttention(
- embed_dim=embed_size, num_heads=num_heads, is_export=is_export
- )
- self.norm = nn.LayerNorm(embed_size)
- def forward(self, x):
- attn_output, _ = self.self_attention(x, x, x)
- x = self.norm(attn_output + x)
- return x
- class SeqCountingDecoder(nn.Module):
- """
- A custom sequence counting decoder that incorporates multi-head attention layers
- and feed-forward networks to process sequences, potentially for latex code counting .
- Args:
- in_features (int): The number of input features.
- out_features (int): The number of output features.
- num_heads (int): The number of attention heads. Defaults to 8.
- num_layers (int): The number of attention layers. Defaults to 4.
- is_export (bool): Flag indicating whether to configure the layer for export.
- """
- def __init__(
- self, in_features, out_features, num_heads=8, num_layers=4, is_export=False
- ):
- super(SeqCountingDecoder, self).__init__()
- self.attention_blocks = nn.ModuleList(
- [
- SelfAttentionBlock(
- embed_size=in_features, num_heads=num_heads, is_export=is_export
- )
- for i in range(num_layers)
- ]
- )
- self.fc1 = nn.Linear(in_features, in_features // 2)
- self.relu = nn.ReLU()
- self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
- self.fc2 = nn.Linear(in_features // 2, out_features)
- def forward(self, x):
- for block in self.attention_blocks:
- x = block(x)
- x = self.fc1(x)
- x = self.relu(x)
- x = x.transpose([0, 2, 1])
- x = self.global_avg_pool(x)
- x = x.squeeze(-1)
- x = self.fc2(x)
- return x
- class CustomMBartForCausalLM(MBartForCausalLM):
- """
- Custom MBart model for causal language modeling with a custom decoder.
- This class extends the MBartForCausalLM by replacing its decoder with a
- custom decoder, allowing for additional flexibility and features in the
- decoding process.
- Args:
- config: The configuration object containing model parameters.
- length_aware (bool): A flag to enable or configure length-aware mechanisms.
- """
- def __init__(self, config, length_aware=True):
- super().__init__(config)
- self.model.decoder = CustomMBartDecoder(config)
- self.counting_decoder = SeqCountingDecoder(
- config.d_model, config.vocab_size, is_export=config.is_export
- )
- self.length_aware = length_aware
- def forward(
- self,
- input_ids=None,
- attention_mask=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- head_mask=None,
- cross_attn_head_mask=None,
- past_key_values=None,
- inputs_embeds=None,
- labels=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- count_gt=None,
- ):
- output_attentions = (
- output_attentions
- if output_attentions is not None
- else self.config.output_attentions
- )
- output_hidden_states = (
- output_hidden_states
- if output_hidden_states is not None
- else self.config.output_hidden_states
- )
- return_dict = (
- return_dict if return_dict is not None else self.config.use_return_dict
- )
- if self.length_aware:
- count_pred = self.counting_decoder(encoder_hidden_states)
- else:
- count_pred = None
- outputs = self.model.decoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- count_pred=count_pred,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- head_mask=head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- logits = self.lm_head(outputs[0])
- return CausalLMOutputWithCrossAttentionsAndCounting(
- logits=logits,
- counting=count_pred,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- cross_attentions=outputs.cross_attentions,
- )
- class UniMERNetHead(nn.Module):
- """Implementation of UniMERNetHead decoder.
- Args:
- max_new_tokens (int): Maximum number of new tokens to generate.
- decoder_start_token_id (int): ID of the token that starts the decoding.
- temperature (float): Sampling temperature for generation.
- do_sample (bool): Whether to use sampling; if False, uses greedy decoding.
- top_p (float): Top-p (nucleus) sampling parameter.
- in_channels (int): Number of input channels/features.
- encoder_hidden_size (int): Hidden size of the encoder.
- decoder_hidden_size (int): Hidden size of the decoder.
- decoder_ffn_dim (int): Dimension of the decoder's feed-forward network.
- decoder_layers (int): Number of layers in the decoder.
- is_export (bool): Flag indicating if the model is being prepared for export.
- length_aware (bool): Flag to enable length-aware mechanisms.
- """
- def __init__(
- self,
- max_new_tokens=1536,
- decoder_start_token_id=0,
- temperature=0.2,
- do_sample=False,
- top_p=0.95,
- in_channels=1024,
- encoder_hidden_size=1024,
- decoder_hidden_size=1024,
- decoder_ffn_dim=4096,
- decoder_layers=8,
- is_export=False,
- length_aware=True,
- ):
- super().__init__()
- mbart_config_dict = {
- "activation_dropout": 0.0,
- "activation_function": "gelu",
- "add_cross_attention": True,
- "add_final_layer_norm": True,
- "attention_dropout": 0.0,
- "bos_token_id": 0,
- "classifier_dropout": 0.0,
- "d_model": decoder_hidden_size,
- "decoder_attention_heads": 16,
- "decoder_ffn_dim": decoder_ffn_dim,
- "decoder_layerdrop": 0.0,
- "decoder_layers": decoder_layers,
- "dropout": 0.1,
- "encoder_attention_heads": 16,
- "encoder_ffn_dim": 4096,
- "encoder_layerdrop": 0.0,
- "encoder_layers": 12,
- "eos_token_id": 2,
- "forced_eos_token_id": 2,
- "init_std": 0.02,
- "is_decoder": True,
- "is_encoder_decoder": False,
- "output_hidden_states": False,
- "max_position_embeddings": max_new_tokens,
- "model_type": "mbart",
- "num_hidden_layers": 12,
- "pad_token_id": 1,
- "scale_embedding": True,
- "tie_word_embeddings": False,
- "transformers_version": "4.40.0",
- "use_cache": True,
- "use_return_dict": True,
- "vocab_size": 50000,
- "_attn_implementation": "eager",
- "hidden_size": decoder_hidden_size,
- "is_export": is_export,
- }
- self.max_new_tokens = max_new_tokens
- self.decoder_start_token_id = decoder_start_token_id
- self.temperature = temperature
- self.do_sample = do_sample
- self.top_p = top_p
- self.max_seq_len = max_new_tokens
- self.config_decoder = MBartConfig(**mbart_config_dict)
- self.encoder_hidden_size = encoder_hidden_size
- self.is_export = self.config_decoder.is_export
- self.decoder = CustomMBartForCausalLM(
- self.config_decoder, length_aware=length_aware
- )
- if self.config_decoder.hidden_size != self.encoder_hidden_size:
- self.enc_to_dec_proj = nn.Linear(
- self.encoder_hidden_size, self.config_decoder.hidden_size
- )
- generation_config = {
- "max_length": 1537,
- "forced_eos_token_id": 2,
- }
- self.eos_token_id = generation_config["forced_eos_token_id"]
- self.pad_token_id = self.config_decoder.pad_token_id
- self.logits_processor = LogitsProcessorList()
- self.logits_processor.append(
- ForcedEOSTokenLogitsProcessor(
- generation_config["max_length"],
- generation_config["forced_eos_token_id"],
- )
- )
- def _get_decoder_start_token_id(
- self, decoder_start_token_id=None, bos_token_id=None
- ) -> int:
- decoder_start_token_id = (
- decoder_start_token_id
- if decoder_start_token_id is not None
- else self.generation_config.decoder_start_token_id
- )
- bos_token_id = (
- bos_token_id
- if bos_token_id is not None
- else self.generation_config.bos_token_id
- )
- if decoder_start_token_id is not None:
- return decoder_start_token_id
- elif bos_token_id is not None:
- return bos_token_id
- raise ValueError(
- "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
- )
- def _prepare_decoder_input_ids_for_generation(
- self,
- batch_size,
- model_kwargs,
- decoder_start_token_id=None,
- bos_token_id=None,
- ):
- if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
- decoder_input_ids = model_kwargs.pop("decoder_input_ids")
- elif "input_ids" in model_kwargs:
- decoder_input_ids = model_kwargs.pop("input_ids")
- else:
- decoder_input_ids = None
- decoder_start_token_id = self._get_decoder_start_token_id(
- decoder_start_token_id, bos_token_id
- )
- if isinstance(decoder_start_token_id, list):
- if len(decoder_start_token_id) != batch_size:
- raise ValueError(
- f"`decoder_start_token_id` expected to have length {batch_size} but got {len(decoder_start_token_id)}"
- )
- decoder_input_ids_start = torch.LongTensor(decoder_start_token_id)
- decoder_input_ids_start = decoder_input_ids_start.view(-1, 1)
- else:
- decoder_input_ids_start = (
- torch.ones(
- (batch_size, 1),
- dtype=torch.int64,
- )
- * decoder_start_token_id
- )
- if decoder_input_ids is None:
- decoder_input_ids = decoder_input_ids_start
- elif (
- self.config.model_type == "vision-encoder-decoder"
- and "donut" in self.name_or_path.lower()
- ):
- pass
- elif self.config.model_type in ["whisper"]:
- pass
- elif (
- isinstance(decoder_start_token_id, int)
- and (decoder_input_ids[:, 0] != decoder_start_token_id).all().item()
- ) or (
- isinstance(decoder_start_token_id, torch.Tensor)
- and (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item()
- ):
- decoder_input_ids = torch.concat(
- [decoder_input_ids_start, decoder_input_ids], dim=-1
- )
- if "decoder_attention_mask" in model_kwargs:
- decoder_attention_mask = model_kwargs["decoder_attention_mask"]
- decoder_attention_mask = torch.cat(
- (
- torch.ones_like(decoder_attention_mask)[:, :1],
- decoder_attention_mask,
- ),
- dim=-1,
- )
- model_kwargs["decoder_attention_mask"] = decoder_attention_mask
- return decoder_input_ids, model_kwargs
- def prepare_inputs_for_generation_mbart(
- self,
- input_ids,
- past_key_values=None,
- attention_mask=None,
- use_cache=None,
- **kwargs,
- ):
- if attention_mask is None:
- attention_mask = torch.ones(input_ids.shape)
- if past_key_values:
- past_length = past_key_values[0][0].shape[2]
- if input_ids.shape[1] > past_length:
- remove_prefix_length = past_length
- else:
- remove_prefix_length = input_ids.shape[1] - 1
- input_ids = input_ids[:, remove_prefix_length:]
- return {
- "input_ids": input_ids,
- "attention_mask": attention_mask,
- "past_key_values": past_key_values,
- "use_cache": use_cache,
- }
- def prepare_inputs_for_generation(
- self,
- input_ids,
- past_key_values=None,
- attention_mask=None,
- use_cache=None,
- encoder_outputs=None,
- **kwargs,
- ):
- decoder_inputs = self.prepare_inputs_for_generation_mbart(
- input_ids, past_key_values=past_key_values
- )
- decoder_attention_mask = (
- decoder_inputs["attention_mask"]
- if "attention_mask" in decoder_inputs
- else None
- )
- input_dict = {
- "attention_mask": attention_mask,
- "decoder_attention_mask": decoder_attention_mask,
- "decoder_input_ids": decoder_inputs["input_ids"],
- "encoder_outputs": encoder_outputs,
- "past_key_values": decoder_inputs["past_key_values"],
- "use_cache": use_cache,
- }
- return input_dict
- def prepare_inputs_for_generation_export(
- self,
- past_key_values=None,
- attention_mask=None,
- use_cache=None,
- encoder_outputs=None,
- **kwargs,
- ):
- input_dict = {
- "decoder_attention_mask": None,
- "use_cache": use_cache,
- }
- return input_dict
- def _extract_past_from_model_output(
- self, outputs: ModelOutput, standardize_cache_format: bool = False
- ):
- past_key_values = None
- if "past_key_values" in outputs:
- past_key_values = outputs.past_key_values
- elif "mems" in outputs:
- past_key_values = outputs.mems
- elif "past_buckets_states" in outputs:
- past_key_values = outputs.past_buckets_states
- return past_key_values
- def _update_model_kwargs_for_generation(
- self,
- outputs: ModelOutput,
- model_kwargs: Dict[str, Any],
- is_encoder_decoder: bool = False,
- standardize_cache_format: bool = False,
- ) -> Dict[str, Any]:
- model_kwargs["past_key_values"] = self._extract_past_from_model_output(
- outputs, standardize_cache_format=standardize_cache_format
- )
- if getattr(outputs, "state", None) is not None:
- model_kwargs["state"] = outputs.state
- if "token_type_ids" in model_kwargs:
- token_type_ids = model_kwargs["token_type_ids"]
- model_kwargs["token_type_ids"] = torch.concat(
- [token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1
- )
- if not is_encoder_decoder:
- if "attention_mask" in model_kwargs:
- attention_mask = model_kwargs["attention_mask"]
- model_kwargs["attention_mask"] = torch.concat(
- [
- attention_mask,
- attention_mask.new_ones((attention_mask.shape[0], 1)),
- ],
- dim=-1,
- )
- else:
- if "decoder_attention_mask" in model_kwargs:
- decoder_attention_mask = model_kwargs["decoder_attention_mask"]
- model_kwargs["decoder_attention_mask"] = torch.concat(
- [
- decoder_attention_mask,
- decoder_attention_mask.new_ones(
- (decoder_attention_mask.shape[0], 1)
- ),
- ],
- dim=-1,
- )
- if (
- "cache_position" in model_kwargs
- and model_kwargs["cache_position"] is not None
- ):
- model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
- return model_kwargs
- def stopping_criteria(self, input_ids):
- if self.is_export:
- return input_ids[:, -1] == torch.Tensor([self.eos_token_id])
- is_done = torch.isin(input_ids[:, -1], torch.Tensor([self.eos_token_id]))
- return is_done
- def generate_single_iter(
- self,
- decoder_input_ids=None,
- decoder_attention_mask=None,
- encoder_outputs=None,
- past_key_values=None,
- decoder_inputs_embeds=None,
- labels=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- **kwargs,
- ):
- encoder_hidden_states = encoder_outputs[0]
- if self.config_decoder.hidden_size != self.encoder_hidden_size:
- encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
- kwargs_decoder = {}
- decoder_outputs = self.decoder(
- input_ids=decoder_input_ids,
- attention_mask=decoder_attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=None,
- inputs_embeds=None,
- output_attentions=False,
- output_hidden_states=output_hidden_states,
- use_cache=use_cache,
- past_key_values=past_key_values,
- return_dict=return_dict,
- **kwargs_decoder,
- )
- return Seq2SeqLMOutput(
- loss=None,
- logits=decoder_outputs.logits,
- past_key_values=decoder_outputs.past_key_values,
- decoder_hidden_states=decoder_outputs.hidden_states,
- decoder_attentions=decoder_outputs.attentions,
- cross_attentions=decoder_outputs.cross_attentions,
- encoder_last_hidden_state=encoder_outputs.last_hidden_state,
- encoder_hidden_states=encoder_outputs.hidden_states,
- encoder_attentions=encoder_outputs.attentions,
- )
- @torch.no_grad()
- def generate(
- self,
- model_kwargs,
- ):
- """
- Generate sequences using the UniMERNetHead for inference tasks.
- Args:
- model_kwargs (dict): A dictionary of model configurations and inputs, which typically include:
- - encoder_outputs: Outputs from the encoder.
- - use_cache: Boolean flag to indicate if caching should be used.
- - output_attentions: Boolean flag for outputting attention scores.
- - output_hidden_states: Boolean flag for outputting hidden states.
- Returns:
- A tensor containing the generated sequences.
- """
- batch_size = model_kwargs["encoder_outputs"]["last_hidden_state"].shape[0]
- generation_config = {
- "decoder_start_token_id": 0,
- "bos_token_id": 0,
- }
- input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
- batch_size=batch_size,
- model_kwargs=model_kwargs,
- decoder_start_token_id=generation_config["decoder_start_token_id"],
- bos_token_id=generation_config["bos_token_id"],
- )
- model_kwargs["key use_cache"] = True
- batch_size, cur_len = input_ids.shape
- if "inputs_embeds" in model_kwargs:
- cur_len = model_kwargs["inputs_embeds"].shape[1]
- model_kwargs["cache_position"] = torch.arange(cur_len)
- pad_token_id = self.pad_token_id
- eos_token_id = [self.eos_token_id]
- eos_token = self.eos_token_id
- unfinished_sequences = torch.ones(batch_size, dtype=torch.int64)
- for idx in range(self.max_seq_len):
- model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
- outputs = self.generate_single_iter(
- **model_inputs,
- return_dict=True,
- output_attentions=False,
- output_hidden_states=False,
- )
- next_token_logits = outputs.logits[:, -1, :]
- next_tokens_scores = self.logits_processor(input_ids, next_token_logits)
- next_tokens = torch.argmax(next_tokens_scores, dim=-1)
- if eos_token_id is not None:
- if pad_token_id is None:
- raise ValueError(
- "If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
- )
- next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
- 1 - unfinished_sequences
- )
- input_ids = torch.concat([input_ids, next_tokens[:, None]], dim=-1)
- model_kwargs = self._update_model_kwargs_for_generation(
- outputs,
- model_kwargs,
- is_encoder_decoder=self.config_decoder.is_encoder_decoder,
- )
- unfinished_sequences = unfinished_sequences & ~self.stopping_criteria(
- input_ids
- ).to(torch.int64)
- if (
- eos_token is not None
- and (
- torch.cumsum((input_ids == eos_token).to(torch.int64), 1)[:, -1]
- >= 1
- ).all()
- ):
- break
- return input_ids
- @torch.no_grad()
- def generate_export(
- self,
- encoder_outputs,
- model_kwargs,
- ):
- batch_size = encoder_outputs["last_hidden_state"].shape[0]
- generation_config = {
- "decoder_start_token_id": 0,
- "bos_token_id": 0,
- }
- input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
- batch_size=batch_size,
- model_kwargs=model_kwargs,
- decoder_start_token_id=generation_config["decoder_start_token_id"],
- bos_token_id=generation_config["bos_token_id"],
- )
- input_ids = input_ids.reshape([-1, 1])
- decoder_input_ids = input_ids
- model_kwargs["key use_cache"] = True
- batch_size, cur_len = input_ids.shape
- if "inputs_embeds" in model_kwargs:
- cur_len = model_kwargs["inputs_embeds"].shape[1]
- cache_position = torch.arange(cur_len)
- pad_token_id = self.pad_token_id
- eos_token_id = [self.eos_token_id]
- eos_token = self.eos_token_id
- unfinished_sequences = torch.ones([batch_size], dtype=torch.int64)
- i_idx = torch.full([], 0)
- past_key_values = []
- for i in range(8):
- init_arr = torch.zeros([batch_size, 16, 0, 64])
- cache = (init_arr, init_arr, init_arr, init_arr)
- past_key_values.append(cache)
- idx = 0
- while i_idx < torch.Tensor(self.max_seq_len):
- model_inputs = self.prepare_inputs_for_generation_export(
- past_key_values=past_key_values, **model_kwargs
- )
- decoder_attention_mask = model_inputs["decoder_attention_mask"]
- decoder_attention_mask = torch.ones(input_ids.shape)
- outputs = self.generate_single_iter(
- decoder_input_ids=decoder_input_ids,
- decoder_attention_mask=decoder_attention_mask,
- encoder_outputs=encoder_outputs,
- past_key_values=past_key_values,
- return_dict=True,
- output_attentions=False,
- output_hidden_states=False,
- )
- next_token_logits = outputs.logits[:, -1, :]
- next_tokens_scores = self.logits_processor(input_ids, next_token_logits)
- next_tokens = torch.argmax(next_tokens_scores, dim=-1)
- if eos_token_id is not None:
- next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
- 1 - unfinished_sequences
- )
- input_ids = torch.concat([input_ids, next_tokens.unsqueeze(1)], dim=-1)
- past_length = past_key_values[0][0].shape[2]
- decoder_input_ids = next_tokens.unsqueeze(1)
- past_key_values = outputs.past_key_values
- cache_position = cache_position[-1:] + 1
- unfinished_sequences = unfinished_sequences & ~self.stopping_criteria(
- input_ids
- ).to(torch.int64)
- if (
- eos_token is not None
- and (
- torch.cumsum((input_ids == eos_token).to(torch.int64), 1)[:, -1]
- >= 1
- ).all()
- ):
- break
- i_idx += 1
- return input_ids
- def forwad_train(
- self,
- encoder_outputs,
- decoder_input_ids,
- decoder_attention_mask,
- past_key_values=None,
- decoder_inputs_embeds=None,
- labels=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- **kwargs,
- ):
- """
- Training for the UniMERNetHead.
- Args:
- encoder_outputs: Outputs from the encoder, used as input to the decoder.
- decoder_input_ids: Input IDs for the decoder.
- decoder_attention_mask: Attention mask for the decoder inputs.
- past_key_values: Cached key/values for faster decoding.
- decoder_inputs_embeds: Optional embeddings for the decoder inputs.
- labels: Target labels for calculating loss.
- use_cache: Whether to use cache during decoding.
- output_attentions: Whether to return attention scores.
- output_hidden_states: Whether to return hidden states.
- return_dict: Whether to return a dictionary of outputs.
- **kwargs: Additional keyword arguments.
- Returns:
- logits: The raw, unnormalized predictions from the model.
- count_pred: Optional prediction related to sequence length or other counts.
- masked_labels: The labels used during training, possibly masked.
- """
- labels = decoder_input_ids * 1
- labels = labels.masked_fill_(labels == self.pad_token_id, -100)
- input_decoder_input_ids = decoder_input_ids[:, :-1]
- input_decoder_attention_mask = decoder_attention_mask[:, :-1]
- encoder_hidden_states = encoder_outputs[0]
- if self.config_decoder.hidden_size != self.encoder_hidden_size:
- encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
- kwargs_decoder = {}
- decoder_outputs = self.decoder(
- input_ids=input_decoder_input_ids,
- attention_mask=input_decoder_attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=None,
- inputs_embeds=None,
- output_attentions=False,
- output_hidden_states=output_hidden_states,
- use_cache=use_cache,
- past_key_values=past_key_values,
- return_dict=return_dict,
- **kwargs_decoder,
- )
- logits = decoder_outputs.logits
- count_pred = decoder_outputs.counting
- return logits, count_pred, labels
- def forward(self, inputs, targets=None):
- """
- Forward pass for the UniMERNetHead, handling both training and inference.
- Args:
- inputs: The input data, which can vary based on training or inference.
- targets: The target labels, used only during training.
- Returns:
- During inference: Returns predicted latex code.
- During training: Returns logits, predicted counts, and masked labels.
- """
- self.is_export = False if self.training else True
- if not self.training:
- encoder_outputs = inputs
- if self.is_export:
- model_kwargs = {
- "output_attentions": False,
- "output_hidden_states": False,
- "use_cache": True,
- }
- word_pred = self.generate_export(encoder_outputs, model_kwargs)
- else:
- model_kwargs = {
- "output_attentions": False,
- "output_hidden_states": False,
- "use_cache": True,
- "encoder_outputs": encoder_outputs,
- }
- word_pred = self.generate(model_kwargs)
- return word_pred
- encoder_outputs, tgt_seq, mask = inputs
- logits, count_pred, masked_labels = self.forwad_train(
- encoder_outputs, tgt_seq, mask
- )
- return logits, count_pred, masked_labels
|