| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- import cv2
- import copy
- import numpy as np
- from . import predict_rec
- from . import predict_det
- from . import predict_cls
- class TextSystem(object):
- def __init__(self, args, **kwargs):
- self.text_detector = predict_det.TextDetector(args, **kwargs)
- self.text_recognizer = predict_rec.TextRecognizer(args, **kwargs)
- self.use_angle_cls = args.use_angle_cls
- self.drop_score = args.drop_score
- if self.use_angle_cls:
- self.text_classifier = predict_cls.TextClassifier(args, **kwargs)
- def get_rotate_crop_image(self, img, points):
- '''
- img_height, img_width = img.shape[0:2]
- left = int(np.min(points[:, 0]))
- right = int(np.max(points[:, 0]))
- top = int(np.min(points[:, 1]))
- bottom = int(np.max(points[:, 1]))
- img_crop = img[top:bottom, left:right, :].copy()
- points[:, 0] = points[:, 0] - left
- points[:, 1] = points[:, 1] - top
- '''
- img_crop_width = int(
- max(
- np.linalg.norm(points[0] - points[1]),
- np.linalg.norm(points[2] - points[3])))
- img_crop_height = int(
- max(
- np.linalg.norm(points[0] - points[3]),
- np.linalg.norm(points[1] - points[2])))
- pts_std = np.float32([[0, 0], [img_crop_width, 0],
- [img_crop_width, img_crop_height],
- [0, img_crop_height]])
- M = cv2.getPerspectiveTransform(points, pts_std)
- dst_img = cv2.warpPerspective(
- img,
- M, (img_crop_width, img_crop_height),
- borderMode=cv2.BORDER_REPLICATE,
- flags=cv2.INTER_CUBIC)
- dst_img_height, dst_img_width = dst_img.shape[0:2]
- if dst_img_height * 1.0 / dst_img_width >= 1.5:
- dst_img = np.rot90(dst_img)
- return dst_img
- def __call__(self, img):
- ori_im = img.copy()
- dt_boxes, elapse = self.text_detector(img)
- print("dt_boxes num : {}, elapse : {}".format(
- len(dt_boxes), elapse))
- if dt_boxes is None:
- return None, None
- img_crop_list = []
- dt_boxes = sorted_boxes(dt_boxes)
- for bno in range(len(dt_boxes)):
- tmp_box = copy.deepcopy(dt_boxes[bno])
- img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
- img_crop_list.append(img_crop)
- if self.use_angle_cls:
- img_crop_list, angle_list, elapse = self.text_classifier(
- img_crop_list)
- print("cls num : {}, elapse : {}".format(
- len(img_crop_list), elapse))
- rec_res, elapse = self.text_recognizer(img_crop_list)
- print("rec_res num : {}, elapse : {}".format(
- len(rec_res), elapse))
- # self.print_draw_crop_rec_res(img_crop_list, rec_res)
- filter_boxes, filter_rec_res = [], []
- for box, rec_reuslt in zip(dt_boxes, rec_res):
- text, score = rec_reuslt
- if score >= self.drop_score:
- filter_boxes.append(box)
- filter_rec_res.append(rec_reuslt)
- return filter_boxes, filter_rec_res
- def sorted_boxes(dt_boxes):
- """
- Sort text boxes in order from top to bottom, left to right
- args:
- dt_boxes(array):detected text boxes with shape [4, 2]
- return:
- sorted boxes(array) with shape [4, 2]
- """
- num_boxes = dt_boxes.shape[0]
- sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
- _boxes = list(sorted_boxes)
- for i in range(num_boxes - 1):
- if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
- (_boxes[i + 1][0][0] < _boxes[i][0][0]):
- tmp = _boxes[i]
- _boxes[i] = _boxes[i + 1]
- _boxes[i + 1] = tmp
- return _boxes
|