| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- import time
- import cv2
- import torch
- from loguru import logger
- from magic_pdf.config.constants import MODEL_NAME
- from magic_pdf.model.sub_modules.model_init import AtomModelSingleton
- from magic_pdf.model.sub_modules.model_utils import (
- clean_vram, crop_img, get_res_list_from_layout_res)
- from magic_pdf.model.sub_modules.ocr.paddleocr2pytorch.ocr_utils import (
- get_adjusted_mfdetrec_res, get_ocr_result_list)
- YOLO_LAYOUT_BASE_BATCH_SIZE = 1
- MFD_BASE_BATCH_SIZE = 1
- MFR_BASE_BATCH_SIZE = 16
- class BatchAnalyze:
- def __init__(self, model_manager, batch_ratio: int, show_log, layout_model, formula_enable, table_enable):
- self.model_manager = model_manager
- self.batch_ratio = batch_ratio
- self.show_log = show_log
- self.layout_model = layout_model
- self.formula_enable = formula_enable
- self.table_enable = table_enable
- def __call__(self, images_with_extra_info: list) -> list:
- if len(images_with_extra_info) == 0:
- return []
-
- images_layout_res = []
- layout_start_time = time.time()
- _, fst_ocr, fst_lang = images_with_extra_info[0]
- self.model = self.model_manager.get_model(fst_ocr, self.show_log, fst_lang, self.layout_model, self.formula_enable, self.table_enable)
- images = [image for image, _, _ in images_with_extra_info]
- if self.model.layout_model_name == MODEL_NAME.LAYOUTLMv3:
- # layoutlmv3
- for image in images:
- layout_res = self.model.layout_model(image, ignore_catids=[])
- images_layout_res.append(layout_res)
- elif self.model.layout_model_name == MODEL_NAME.DocLayout_YOLO:
- # doclayout_yolo
- layout_images = []
- for image_index, image in enumerate(images):
- layout_images.append(image)
- images_layout_res += self.model.layout_model.batch_predict(
- # layout_images, self.batch_ratio * YOLO_LAYOUT_BASE_BATCH_SIZE
- layout_images, YOLO_LAYOUT_BASE_BATCH_SIZE
- )
- logger.info(
- f'layout time: {round(time.time() - layout_start_time, 2)}, image num: {len(images)}'
- )
- if self.model.apply_formula:
- # 公式检测
- mfd_start_time = time.time()
- images_mfd_res = self.model.mfd_model.batch_predict(
- # images, self.batch_ratio * MFD_BASE_BATCH_SIZE
- images, MFD_BASE_BATCH_SIZE
- )
- logger.info(
- f'mfd time: {round(time.time() - mfd_start_time, 2)}, image num: {len(images)}'
- )
- # 公式识别
- mfr_start_time = time.time()
- images_formula_list = self.model.mfr_model.batch_predict(
- images_mfd_res,
- images,
- batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
- )
- mfr_count = 0
- for image_index in range(len(images)):
- images_layout_res[image_index] += images_formula_list[image_index]
- mfr_count += len(images_formula_list[image_index])
- logger.info(
- f'mfr time: {round(time.time() - mfr_start_time, 2)}, image num: {mfr_count}'
- )
- # 清理显存
- clean_vram(self.model.device, vram_threshold=8)
- det_time = 0
- det_count = 0
- table_time = 0
- table_count = 0
- # reference: magic_pdf/model/doc_analyze_by_custom_model.py:doc_analyze
- for index in range(len(images)):
- _, ocr_enable, _lang = images_with_extra_info[index]
- self.model = self.model_manager.get_model(ocr_enable, self.show_log, _lang, self.layout_model, self.formula_enable, self.table_enable)
- layout_res = images_layout_res[index]
- np_array_img = images[index]
- ocr_res_list, table_res_list, single_page_mfdetrec_res = (
- get_res_list_from_layout_res(layout_res)
- )
- # ocr识别
- det_start = time.time()
- # Process each area that requires OCR processing
- for res in ocr_res_list:
- new_image, useful_list = crop_img(
- res, np_array_img, crop_paste_x=50, crop_paste_y=50
- )
- adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
- single_page_mfdetrec_res, useful_list
- )
- # OCR recognition
- new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
- # if ocr_enable:
- # ocr_res = self.model.ocr_model.ocr(
- # new_image, mfd_res=adjusted_mfdetrec_res
- # )[0]
- # else:
- ocr_res = self.model.ocr_model.ocr(
- new_image, mfd_res=adjusted_mfdetrec_res, rec=False
- )[0]
- # Integration results
- if ocr_res:
- ocr_result_list = get_ocr_result_list(ocr_res, useful_list, ocr_enable, new_image, _lang)
- layout_res.extend(ocr_result_list)
- det_time += time.time() - det_start
- det_count += len(ocr_res_list)
- # 表格识别 table recognition
- if self.model.apply_table:
- table_start = time.time()
- for res in table_res_list:
- new_image, _ = crop_img(res, np_array_img)
- single_table_start_time = time.time()
- html_code = None
- if self.model.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
- with torch.no_grad():
- table_result = self.model.table_model.predict(
- new_image, 'html'
- )
- if len(table_result) > 0:
- html_code = table_result[0]
- elif self.model.table_model_name == MODEL_NAME.TABLE_MASTER:
- html_code = self.model.table_model.img2html(new_image)
- elif self.model.table_model_name == MODEL_NAME.RAPID_TABLE:
- html_code, table_cell_bboxes, logic_points, elapse = (
- self.model.table_model.predict(new_image)
- )
- run_time = time.time() - single_table_start_time
- if run_time > self.model.table_max_time:
- logger.warning(
- f'table recognition processing exceeds max time {self.model.table_max_time}s'
- )
- # 判断是否返回正常
- if html_code:
- expected_ending = html_code.strip().endswith(
- '</html>'
- ) or html_code.strip().endswith('</table>')
- if expected_ending:
- res['html'] = html_code
- else:
- logger.warning(
- 'table recognition processing fails, not found expected HTML table end'
- )
- else:
- logger.warning(
- 'table recognition processing fails, not get html return'
- )
- table_time += time.time() - table_start
- table_count += len(table_res_list)
- logger.info(f'ocr-det time: {round(det_time, 2)}, image num: {det_count}')
- if self.model.apply_table:
- logger.info(f'table time: {round(table_time, 2)}, image num: {table_count}')
- # Create dictionaries to store items by language
- need_ocr_lists_by_lang = {} # Dict of lists for each language
- img_crop_lists_by_lang = {} # Dict of lists for each language
- for layout_res in images_layout_res:
- for layout_res_item in layout_res:
- if layout_res_item['category_id'] in [15]:
- if 'np_img' in layout_res_item and 'lang' in layout_res_item:
- lang = layout_res_item['lang']
- # Initialize lists for this language if not exist
- if lang not in need_ocr_lists_by_lang:
- need_ocr_lists_by_lang[lang] = []
- img_crop_lists_by_lang[lang] = []
- # Add to the appropriate language-specific lists
- need_ocr_lists_by_lang[lang].append(layout_res_item)
- img_crop_lists_by_lang[lang].append(layout_res_item['np_img'])
- # Remove the fields after adding to lists
- layout_res_item.pop('np_img')
- layout_res_item.pop('lang')
- if len(img_crop_lists_by_lang) > 0:
- # Process OCR by language
- rec_time = 0
- rec_start = time.time()
- total_processed = 0
- # Process each language separately
- for lang, img_crop_list in img_crop_lists_by_lang.items():
- if len(img_crop_list) > 0:
- # Get OCR results for this language's images
- atom_model_manager = AtomModelSingleton()
- ocr_model = atom_model_manager.get_atom_model(
- atom_model_name='ocr',
- ocr_show_log=False,
- det_db_box_thresh=0.3,
- lang=lang
- )
- ocr_res_list = ocr_model.ocr(img_crop_list, det=False)[0]
- # Verify we have matching counts
- assert len(ocr_res_list) == len(
- need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}'
- # Process OCR results for this language
- for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]):
- ocr_text, ocr_score = ocr_res_list[index]
- layout_res_item['text'] = ocr_text
- layout_res_item['score'] = float(round(ocr_score, 2))
- total_processed += len(img_crop_list)
- rec_time += time.time() - rec_start
- logger.info(f'ocr-rec time: {round(rec_time, 2)}, total images processed: {total_processed}')
- return images_layout_res
|