model_json_to_middle_json.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import time
  3. from loguru import logger
  4. from mineru.backend.pipeline.config_reader import get_device, get_llm_aided_config
  5. from mineru.backend.pipeline.model_init import AtomModelSingleton
  6. from mineru.backend.pipeline.para_split import para_split
  7. from mineru.utils.block_pre_proc import prepare_block_bboxes, process_groups
  8. from mineru.utils.block_sort import sort_blocks_by_bbox
  9. from mineru.utils.boxbase import calculate_overlap_area_in_bbox1_area_ratio
  10. from mineru.utils.cut_image import cut_image_and_table
  11. from mineru.utils.enum_class import ContentType
  12. from mineru.utils.llm_aided import llm_aided_title
  13. from mineru.utils.model_utils import clean_memory
  14. from mineru.backend.pipeline.pipeline_magic_model import MagicModel
  15. from mineru.utils.span_block_fix import fill_spans_in_blocks, fix_discarded_block, fix_block_spans
  16. from mineru.utils.span_pre_proc import remove_outside_spans, remove_overlaps_low_confidence_spans, \
  17. remove_overlaps_min_spans, txt_spans_extract
  18. from mineru.version import __version__
  19. from mineru.utils.hash_utils import str_md5
  20. def page_model_info_to_page_info(page_model_info, image_dict, page, image_writer, page_index, ocr_enable=False, formula_enabled=True):
  21. scale = image_dict["scale"]
  22. page_pil_img = image_dict["img_pil"]
  23. page_img_md5 = str_md5(image_dict["img_base64"])
  24. page_w, page_h = map(int, page.get_size())
  25. magic_model = MagicModel(page_model_info, scale)
  26. """从magic_model对象中获取后面会用到的区块信息"""
  27. discarded_blocks = magic_model.get_discarded()
  28. text_blocks = magic_model.get_text_blocks()
  29. title_blocks = magic_model.get_title_blocks()
  30. inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations()
  31. img_groups = magic_model.get_imgs()
  32. table_groups = magic_model.get_tables()
  33. """对image和table的区块分组"""
  34. img_body_blocks, img_caption_blocks, img_footnote_blocks, maybe_text_image_blocks = process_groups(
  35. img_groups, 'image_body', 'image_caption_list', 'image_footnote_list'
  36. )
  37. table_body_blocks, table_caption_blocks, table_footnote_blocks, _ = process_groups(
  38. table_groups, 'table_body', 'table_caption_list', 'table_footnote_list'
  39. )
  40. """获取所有的spans信息"""
  41. spans = magic_model.get_all_spans()
  42. """某些图可能是文本块,通过简单的规则判断一下"""
  43. if len(maybe_text_image_blocks) > 0:
  44. for block in maybe_text_image_blocks:
  45. span_in_block_list = []
  46. for span in spans:
  47. if span['type'] == 'text' and calculate_overlap_area_in_bbox1_area_ratio(span['bbox'], block['bbox']) > 0.7:
  48. span_in_block_list.append(span)
  49. if len(span_in_block_list) > 0:
  50. # span_in_block_list中所有bbox的面积之和
  51. spans_area = sum((span['bbox'][2] - span['bbox'][0]) * (span['bbox'][3] - span['bbox'][1]) for span in span_in_block_list)
  52. # 求ocr_res_area和res的面积的比值
  53. block_area = (block['bbox'][2] - block['bbox'][0]) * (block['bbox'][3] - block['bbox'][1])
  54. if block_area > 0:
  55. ratio = spans_area / block_area
  56. if ratio > 0.25 and ocr_enable:
  57. # 移除block的group_id
  58. block.pop('group_id', None)
  59. # 符合文本图的条件就把块加入到文本块列表中
  60. text_blocks.append(block)
  61. else:
  62. # 如果不符合文本图的条件,就把块加回到图片块列表中
  63. img_body_blocks.append(block)
  64. else:
  65. img_body_blocks.append(block)
  66. """将所有区块的bbox整理到一起"""
  67. if formula_enabled:
  68. interline_equation_blocks = []
  69. if len(interline_equation_blocks) > 0:
  70. for block in interline_equation_blocks:
  71. spans.append({
  72. "type": ContentType.INTERLINE_EQUATION,
  73. 'score': block['score'],
  74. "bbox": block['bbox'],
  75. })
  76. all_bboxes, all_discarded_blocks, footnote_blocks = prepare_block_bboxes(
  77. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  78. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  79. discarded_blocks,
  80. text_blocks,
  81. title_blocks,
  82. interline_equation_blocks,
  83. page_w,
  84. page_h,
  85. )
  86. else:
  87. all_bboxes, all_discarded_blocks, footnote_blocks = prepare_block_bboxes(
  88. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  89. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  90. discarded_blocks,
  91. text_blocks,
  92. title_blocks,
  93. interline_equations,
  94. page_w,
  95. page_h,
  96. )
  97. """在删除重复span之前,应该通过image_body和table_body的block过滤一下image和table的span"""
  98. """顺便删除大水印并保留abandon的span"""
  99. spans = remove_outside_spans(spans, all_bboxes, all_discarded_blocks)
  100. """删除重叠spans中置信度较低的那些"""
  101. spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
  102. """删除重叠spans中较小的那些"""
  103. spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
  104. """根据parse_mode,构造spans,主要是文本类的字符填充"""
  105. if ocr_enable:
  106. pass
  107. else:
  108. """使用新版本的混合ocr方案."""
  109. spans = txt_spans_extract(page, spans, page_pil_img, scale, all_bboxes, all_discarded_blocks)
  110. """先处理不需要排版的discarded_blocks"""
  111. discarded_block_with_spans, spans = fill_spans_in_blocks(
  112. all_discarded_blocks, spans, 0.4
  113. )
  114. fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
  115. """如果当前页面没有有效的bbox则跳过"""
  116. if len(all_bboxes) == 0:
  117. return None
  118. """对image/table/interline_equation截图"""
  119. for span in spans:
  120. if span['type'] in [ContentType.IMAGE, ContentType.TABLE, ContentType.INTERLINE_EQUATION]:
  121. span = cut_image_and_table(
  122. span, page_pil_img, page_img_md5, page_index, image_writer, scale=scale
  123. )
  124. """span填充进block"""
  125. block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.5)
  126. """对block进行fix操作"""
  127. fix_blocks = fix_block_spans(block_with_spans)
  128. """同一行被断开的titile合并"""
  129. # merge_title_blocks(fix_blocks)
  130. """对block进行排序"""
  131. sorted_blocks = sort_blocks_by_bbox(fix_blocks, page_w, page_h, footnote_blocks)
  132. """构造page_info"""
  133. page_info = make_page_info_dict(sorted_blocks, page_index, page_w, page_h, fix_discarded_blocks)
  134. return page_info
  135. def result_to_middle_json(model_list, images_list, pdf_doc, image_writer, lang=None, ocr_enable=False):
  136. middle_json = {"pdf_info": [], "_backend":"pipeline", "_version_name": __version__}
  137. for page_index, page_model_info in enumerate(model_list):
  138. page = pdf_doc[page_index]
  139. image_dict = images_list[page_index]
  140. page_info = page_model_info_to_page_info(
  141. page_model_info, image_dict, page, image_writer, page_index, ocr_enable=ocr_enable
  142. )
  143. if page_info is None:
  144. page_w, page_h = map(int, page.get_size())
  145. page_info = make_page_info_dict([], page_index, page_w, page_h, [])
  146. middle_json["pdf_info"].append(page_info)
  147. """后置ocr处理"""
  148. need_ocr_list = []
  149. img_crop_list = []
  150. text_block_list = []
  151. for page_info in middle_json["pdf_info"]:
  152. for block in page_info['preproc_blocks']:
  153. if block['type'] in ['table', 'image']:
  154. for sub_block in block['blocks']:
  155. if sub_block['type'] in ['image_caption', 'image_footnote', 'table_caption', 'table_footnote']:
  156. text_block_list.append(sub_block)
  157. elif block['type'] in ['text', 'title']:
  158. text_block_list.append(block)
  159. for block in page_info['discarded_blocks']:
  160. text_block_list.append(block)
  161. for block in text_block_list:
  162. for line in block['lines']:
  163. for span in line['spans']:
  164. if 'np_img' in span:
  165. need_ocr_list.append(span)
  166. img_crop_list.append(span['np_img'])
  167. span.pop('np_img')
  168. if len(img_crop_list) > 0:
  169. atom_model_manager = AtomModelSingleton()
  170. ocr_model = atom_model_manager.get_atom_model(
  171. atom_model_name='ocr',
  172. ocr_show_log=False,
  173. det_db_box_thresh=0.3,
  174. lang=lang
  175. )
  176. ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
  177. assert len(ocr_res_list) == len(
  178. need_ocr_list), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_list)}'
  179. for index, span in enumerate(need_ocr_list):
  180. ocr_text, ocr_score = ocr_res_list[index]
  181. if ocr_score > 0.6:
  182. span['content'] = ocr_text
  183. span['score'] = float(f"{ocr_score:.3f}")
  184. else:
  185. span['content'] = ''
  186. span['score'] = 0.0
  187. """分段"""
  188. para_split(middle_json["pdf_info"])
  189. """llm优化"""
  190. llm_aided_config = get_llm_aided_config()
  191. if llm_aided_config is not None:
  192. """标题优化"""
  193. title_aided_config = llm_aided_config.get('title_aided', None)
  194. if title_aided_config is not None:
  195. if title_aided_config.get('enable', False):
  196. llm_aided_title_start_time = time.time()
  197. llm_aided_title(middle_json["pdf_info"], title_aided_config)
  198. logger.info(f'llm aided title time: {round(time.time() - llm_aided_title_start_time, 2)}')
  199. clean_memory(get_device())
  200. return middle_json
  201. def make_page_info_dict(blocks, page_id, page_w, page_h, discarded_blocks):
  202. return_dict = {
  203. 'preproc_blocks': blocks,
  204. 'page_idx': page_id,
  205. 'page_size': [page_w, page_h],
  206. 'discarded_blocks': discarded_blocks,
  207. }
  208. return return_dict