| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- import os
- import time
- # 关闭paddle的信号处理
- import paddle
- from loguru import logger
- paddle.disable_signal_handler()
- os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新
- try:
- import torchtext
- if torchtext.__version__ >= '0.18.0':
- torchtext.disable_torchtext_deprecation_warning()
- except ImportError:
- pass
- import magic_pdf.model as model_config
- from magic_pdf.data.dataset import Dataset
- from magic_pdf.libs.clean_memory import clean_memory
- from magic_pdf.libs.config_reader import (get_device, get_formula_config,
- get_layout_config,
- get_local_models_dir,
- get_table_recog_config)
- from magic_pdf.model.model_list import MODEL
- from magic_pdf.operators.models import InferenceResult
- def dict_compare(d1, d2):
- return d1.items() == d2.items()
- def remove_duplicates_dicts(lst):
- unique_dicts = []
- for dict_item in lst:
- if not any(
- dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts
- ):
- unique_dicts.append(dict_item)
- return unique_dicts
- class ModelSingleton:
- _instance = None
- _models = {}
- def __new__(cls, *args, **kwargs):
- if cls._instance is None:
- cls._instance = super().__new__(cls)
- return cls._instance
- def get_model(
- self,
- ocr: bool,
- show_log: bool,
- lang=None,
- layout_model=None,
- formula_enable=None,
- table_enable=None,
- ):
- key = (ocr, show_log, lang, layout_model, formula_enable, table_enable)
- if key not in self._models:
- self._models[key] = custom_model_init(
- ocr=ocr,
- show_log=show_log,
- lang=lang,
- layout_model=layout_model,
- formula_enable=formula_enable,
- table_enable=table_enable,
- )
- return self._models[key]
- def custom_model_init(
- ocr: bool = False,
- show_log: bool = False,
- lang=None,
- layout_model=None,
- formula_enable=None,
- table_enable=None,
- ):
- model = None
- if model_config.__model_mode__ == 'lite':
- logger.warning(
- 'The Lite mode is provided for developers to conduct testing only, and the output quality is '
- 'not guaranteed to be reliable.'
- )
- model = MODEL.Paddle
- elif model_config.__model_mode__ == 'full':
- model = MODEL.PEK
- if model_config.__use_inside_model__:
- model_init_start = time.time()
- if model == MODEL.Paddle:
- from magic_pdf.model.pp_structure_v2 import CustomPaddleModel
- custom_model = CustomPaddleModel(ocr=ocr, show_log=show_log, lang=lang)
- elif model == MODEL.PEK:
- from magic_pdf.model.pdf_extract_kit import CustomPEKModel
- # 从配置文件读取model-dir和device
- local_models_dir = get_local_models_dir()
- device = get_device()
- layout_config = get_layout_config()
- if layout_model is not None:
- layout_config['model'] = layout_model
- formula_config = get_formula_config()
- if formula_enable is not None:
- formula_config['enable'] = formula_enable
- table_config = get_table_recog_config()
- if table_enable is not None:
- table_config['enable'] = table_enable
- model_input = {
- 'ocr': ocr,
- 'show_log': show_log,
- 'models_dir': local_models_dir,
- 'device': device,
- 'table_config': table_config,
- 'layout_config': layout_config,
- 'formula_config': formula_config,
- 'lang': lang,
- }
- custom_model = CustomPEKModel(**model_input)
- else:
- logger.error('Not allow model_name!')
- exit(1)
- model_init_cost = time.time() - model_init_start
- logger.info(f'model init cost: {model_init_cost}')
- else:
- logger.error('use_inside_model is False, not allow to use inside model')
- exit(1)
- return custom_model
- def doc_analyze(
- dataset: Dataset,
- ocr: bool = False,
- show_log: bool = False,
- start_page_id=0,
- end_page_id=None,
- lang=None,
- layout_model=None,
- formula_enable=None,
- table_enable=None,
- ) -> InferenceResult:
- model_manager = ModelSingleton()
- custom_model = model_manager.get_model(
- ocr, show_log, lang, layout_model, formula_enable, table_enable
- )
- model_json = []
- doc_analyze_start = time.time()
- if end_page_id is None:
- end_page_id = len(dataset)
- for index in range(len(dataset)):
- page_data = dataset.get_page(index)
- img_dict = page_data.get_image()
- img = img_dict['img']
- page_width = img_dict['width']
- page_height = img_dict['height']
- if start_page_id <= index <= end_page_id:
- page_start = time.time()
- result = custom_model(img)
- logger.info(f'-----page_id : {index}, page total time: {round(time.time() - page_start, 2)}-----')
- else:
- result = []
- page_info = {'page_no': index, 'height': page_height, 'width': page_width}
- page_dict = {'layout_dets': result, 'page_info': page_info}
- model_json.append(page_dict)
- gc_start = time.time()
- clean_memory()
- gc_time = round(time.time() - gc_start, 2)
- logger.info(f'gc time: {gc_time}')
- doc_analyze_time = round(time.time() - doc_analyze_start, 2)
- doc_analyze_speed = round((end_page_id + 1 - start_page_id) / doc_analyze_time, 2)
- logger.info(
- f'doc analyze time: {round(time.time() - doc_analyze_start, 2)},'
- f' speed: {doc_analyze_speed} pages/second'
- )
- return InferenceResult(model_json, dataset)
|