| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- import concurrent.futures
- import glob
- import os
- import threading
- import fitz
- from magic_pdf.data.dataset import PymuDocDataset
- from magic_pdf.data.utils import fitz_doc_to_image # PyMuPDF
- def partition_array_greedy(arr, k):
- """Partition an array into k parts using a simple greedy approach.
- Parameters:
- -----------
- arr : list
- The input array of integers
- k : int
- Number of partitions to create
- Returns:
- --------
- partitions : list of lists
- The k partitions of the array
- """
- # Handle edge cases
- if k <= 0:
- raise ValueError('k must be a positive integer')
- if k > len(arr):
- k = len(arr) # Adjust k if it's too large
- if k == 1:
- return [list(range(len(arr)))]
- if k == len(arr):
- return [[i] for i in range(len(arr))]
- # Sort the array in descending order
- sorted_indices = sorted(range(len(arr)), key=lambda i: arr[i][1], reverse=True)
- # Initialize k empty partitions
- partitions = [[] for _ in range(k)]
- partition_sums = [0] * k
- # Assign each element to the partition with the smallest current sum
- for idx in sorted_indices:
- # Find the partition with the smallest sum
- min_sum_idx = partition_sums.index(min(partition_sums))
- # Add the element to this partition
- partitions[min_sum_idx].append(idx) # Store the original index
- partition_sums[min_sum_idx] += arr[idx][1]
- return partitions
- def process_pdf_batch(pdf_jobs, idx):
- """Process a batch of PDF pages using multiple threads.
- Parameters:
- -----------
- pdf_jobs : list of tuples
- List of (pdf_path, page_num) tuples
- output_dir : str or None
- Directory to save images to
- num_threads : int
- Number of threads to use
- **kwargs :
- Additional arguments for process_pdf_page
- Returns:
- --------
- images : list
- List of processed images
- """
- images = []
- for pdf_path, _ in pdf_jobs:
- doc = fitz.open(pdf_path)
- tmp = []
- for page_num in range(len(doc)):
- page = doc[page_num]
- tmp.append(fitz_doc_to_image(page))
- images.append(tmp)
- return (idx, images)
- def batch_build_dataset(pdf_paths, k, lang=None):
- """Process multiple PDFs by partitioning them into k balanced parts and
- processing each part in parallel.
- Parameters:
- -----------
- pdf_paths : list
- List of paths to PDF files
- k : int
- Number of partitions to create
- output_dir : str or None
- Directory to save images to
- threads_per_worker : int
- Number of threads to use per worker
- **kwargs :
- Additional arguments for process_pdf_page
- Returns:
- --------
- all_images : list
- List of all processed images
- """
- # Get page counts for each PDF
- pdf_info = []
- total_pages = 0
- for pdf_path in pdf_paths:
- try:
- doc = fitz.open(pdf_path)
- num_pages = len(doc)
- pdf_info.append((pdf_path, num_pages))
- total_pages += num_pages
- doc.close()
- except Exception as e:
- print(f'Error opening {pdf_path}: {e}')
- # Partition the jobs based on page countEach job has 1 page
- partitions = partition_array_greedy(pdf_info, k)
- for i, partition in enumerate(partitions):
- print(f'Partition {i+1}: {len(partition)} pdfs')
- # Process each partition in parallel
- all_images_h = {}
- with concurrent.futures.ProcessPoolExecutor(max_workers=k) as executor:
- # Submit one task per partition
- futures = []
- for sn, partition in enumerate(partitions):
- # Get the jobs for this partition
- partition_jobs = [pdf_info[idx] for idx in partition]
- # Submit the task
- future = executor.submit(
- process_pdf_batch,
- partition_jobs,
- sn
- )
- futures.append(future)
- # Process results as they complete
- for i, future in enumerate(concurrent.futures.as_completed(futures)):
- try:
- idx, images = future.result()
- print(f'Partition {i+1} completed: processed {len(images)} images')
- all_images_h[idx] = images
- except Exception as e:
- print(f'Error processing partition: {e}')
- results = [None] * len(pdf_paths)
- for i in range(len(partitions)):
- partition = partitions[i]
- for j in range(len(partition)):
- with open(pdf_info[partition[j]][0], 'rb') as f:
- pdf_bytes = f.read()
- dataset = PymuDocDataset(pdf_bytes, lang=lang)
- dataset.set_images(all_images_h[i][j])
- results[partition[j]] = dataset
- return results
|