boost_with_cuda.rst 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. Boost With Cuda
  2. ================
  3. If your device supports CUDA and meets the GPU requirements of the
  4. mainline environment, you can use GPU acceleration. Please select the
  5. appropriate guide based on your system:
  6. - :ref:`ubuntu_22_04_lts_section`
  7. - :ref:`windows_10_or_11_section`
  8. .. _ubuntu_22_04_lts_section:
  9. Ubuntu 22.04 LTS
  10. -----------------
  11. 1. Check if NVIDIA Drivers Are Installed
  12. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. .. code:: sh
  14. nvidia-smi
  15. If you see information similar to the following, it means that the
  16. NVIDIA drivers are already installed, and you can skip Step 2.
  17. .. note::
  18. ``CUDA Version`` should be >= 12.4, If the displayed version number is less than 12.4, please upgrade the driver.
  19. .. code:: text
  20. +---------------------------------------------------------------------------------------+
  21. | NVIDIA-SMI 570.133.07 Driver Version: 572.83 CUDA Version: 12.8 |
  22. |-----------------------------------------+----------------------+----------------------+
  23. | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
  24. | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
  25. | | | MIG M. |
  26. |=========================================+======================+======================|
  27. | 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
  28. | 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
  29. | | | N/A |
  30. +-----------------------------------------+----------------------+----------------------+
  31. 2. Install the Driver
  32. ~~~~~~~~~~~~~~~~~~~~~
  33. If no driver is installed, use the following command:
  34. .. code:: sh
  35. sudo apt-get update
  36. sudo apt-get install nvidia-driver-570-server
  37. Install the proprietary driver and restart your computer after
  38. installation.
  39. .. code:: sh
  40. reboot
  41. 3. Install Anaconda
  42. ~~~~~~~~~~~~~~~~~~~
  43. If Anaconda is already installed, skip this step.
  44. .. code:: sh
  45. wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
  46. bash Anaconda3-2024.06-1-Linux-x86_64.sh
  47. In the final step, enter ``yes``, close the terminal, and reopen it.
  48. 4. Create an Environment Using Conda
  49. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  50. Specify Python version 3.10.
  51. .. code:: sh
  52. conda create -n mineru 'python<3.13' -y
  53. conda activate mineru
  54. 5. Install Applications
  55. ~~~~~~~~~~~~~~~~~~~~~~~
  56. .. code:: sh
  57. pip install -U magic-pdf[full]
  58. .. admonition:: Important
  59. :class: tip
  60. ❗ After installation, make sure to check the version of ``magic-pdf`` using the following command:
  61. .. code:: sh
  62. magic-pdf --version
  63. If the version number is less than 1.3.0, please report the issue.
  64. 6. Download Models
  65. ~~~~~~~~~~~~~~~~~~
  66. Refer to detailed instructions on :doc:`download_model_weight_files`
  67. 7. Understand the Location of the Configuration File
  68. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  69. After completing the `6. Download Models <#6-download-models>`__ step,
  70. the script will automatically generate a ``magic-pdf.json`` file in the
  71. user directory and configure the default model path. You can find the
  72. ``magic-pdf.json`` file in your user directory.
  73. .. admonition:: TIP
  74. :class: tip
  75. The user directory for Linux is “/home/username”.
  76. 8. First Run
  77. ~~~~~~~~~~~~
  78. Download a sample file from the repository and test it.
  79. .. code:: sh
  80. wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf
  81. magic-pdf -p small_ocr.pdf -o ./output
  82. 9. Test CUDA Acceleration
  83. ~~~~~~~~~~~~~~~~~~~~~~~~~
  84. If your graphics card has at least **8GB** of VRAM, follow these steps
  85. to test CUDA acceleration:
  86. 1. Modify the value of ``"device-mode"`` in the ``magic-pdf.json``
  87. configuration file located in your home directory.
  88. .. code:: json
  89. {
  90. "device-mode": "cuda"
  91. }
  92. 2. Test CUDA acceleration with the following command:
  93. .. code:: sh
  94. magic-pdf -p small_ocr.pdf -o ./output
  95. .. _windows_10_or_11_section:
  96. Windows 10/11
  97. --------------
  98. 1. Install CUDA and cuDNN
  99. ~~~~~~~~~~~~~~~~~~~~~~~~~
  100. You need to install a CUDA version that is compatible with torch's requirements. Currently, torch supports CUDA 11.8/12.4/12.6.
  101. - CUDA 11.8 https://developer.nvidia.com/cuda-11-8-0-download-archive
  102. - CUDA 12.4 https://developer.nvidia.com/cuda-12-4-0-download-archive
  103. - CUDA 12.6 https://developer.nvidia.com/cuda-12-6-0-download-archive
  104. 2. Install Anaconda
  105. ~~~~~~~~~~~~~~~~~~~
  106. If Anaconda is already installed, you can skip this step.
  107. Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe
  108. 3. Create an Environment Using Conda
  109. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  110. ::
  111. conda create -n mineru 'python<3.13' -y
  112. conda activate mineru
  113. 4. Install Applications
  114. ~~~~~~~~~~~~~~~~~~~~~~~
  115. ::
  116. pip install -U magic-pdf[full]
  117. .. admonition:: Important
  118. :class: tip
  119. ❗️After installation, verify the version of ``magic-pdf``:
  120. .. code:: bash
  121. magic-pdf --version
  122. If the version number is less than 1.3.0, please report it in the issues section.
  123. 5. Download Models
  124. ~~~~~~~~~~~~~~~~~~
  125. Refer to detailed instructions on :doc:`download_model_weight_files`
  126. 6. Understand the Location of the Configuration File
  127. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  128. After completing the `5. Download Models <#5-download-models>`__ step,
  129. the script will automatically generate a ``magic-pdf.json`` file in the
  130. user directory and configure the default model path. You can find the
  131. ``magic-pdf.json`` file in your 【user directory】 .
  132. .. admonition:: Tip
  133. :class: tip
  134. The user directory for Windows is “C:/Users/username”.
  135. 7. First Run
  136. ~~~~~~~~~~~~
  137. Download a sample file from the repository and test it.
  138. .. code:: powershell
  139. wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf -O small_ocr.pdf
  140. magic-pdf -p small_ocr.pdf -o ./output
  141. 8. Test CUDA Acceleration
  142. ~~~~~~~~~~~~~~~~~~~~~~~~~
  143. If your graphics card has at least 8GB of VRAM, follow these steps to
  144. test CUDA-accelerated parsing performance.
  145. 1. **Overwrite the installation of torch and torchvision** supporting CUDA.(Please select the appropriate index-url based on your CUDA version. For more details, refer to the [PyTorch official website](https://pytorch.org/get-started/locally/).)
  146. .. code:: sh
  147. pip install --force-reinstall torch==2.6.0 torchvision==0.21.1 "numpy<2.0.0" --index-url https://download.pytorch.org/whl/cu124
  148. 2. **Modify the value of ``"device-mode"``** in the ``magic-pdf.json``
  149. configuration file located in your user directory.
  150. .. code:: json
  151. {
  152. "device-mode": "cuda"
  153. }
  154. 3. **Run the following command to test CUDA acceleration**:
  155. ::
  156. magic-pdf -p small_ocr.pdf -o ./output