| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- Boost With Cuda
- ================
- If your device supports CUDA and meets the GPU requirements of the
- mainline environment, you can use GPU acceleration. Please select the
- appropriate guide based on your system:
- - :ref:`ubuntu_22_04_lts_section`
- - :ref:`windows_10_or_11_section`
- .. _ubuntu_22_04_lts_section:
- Ubuntu 22.04 LTS
- -----------------
- 1. Check if NVIDIA Drivers Are Installed
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- .. code:: sh
- nvidia-smi
- If you see information similar to the following, it means that the
- NVIDIA drivers are already installed, and you can skip Step 2.
- .. note::
- ``CUDA Version`` should be >= 12.4, If the displayed version number is less than 12.4, please upgrade the driver.
- .. code:: text
- +---------------------------------------------------------------------------------------+
- | NVIDIA-SMI 570.133.07 Driver Version: 572.83 CUDA Version: 12.8 |
- |-----------------------------------------+----------------------+----------------------+
- | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
- | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
- | | | MIG M. |
- |=========================================+======================+======================|
- | 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
- | 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
- | | | N/A |
- +-----------------------------------------+----------------------+----------------------+
- 2. Install the Driver
- ~~~~~~~~~~~~~~~~~~~~~
- If no driver is installed, use the following command:
- .. code:: sh
- sudo apt-get update
- sudo apt-get install nvidia-driver-570-server
- Install the proprietary driver and restart your computer after
- installation.
- .. code:: sh
- reboot
- 3. Install Anaconda
- ~~~~~~~~~~~~~~~~~~~
- If Anaconda is already installed, skip this step.
- .. code:: sh
- wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
- bash Anaconda3-2024.06-1-Linux-x86_64.sh
- In the final step, enter ``yes``, close the terminal, and reopen it.
- 4. Create an Environment Using Conda
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Specify Python version 3.10.
- .. code:: sh
- conda create -n mineru 'python<3.13' -y
- conda activate mineru
- 5. Install Applications
- ~~~~~~~~~~~~~~~~~~~~~~~
- .. code:: sh
- pip install -U magic-pdf[full]
- .. admonition:: Important
- :class: tip
- ❗ After installation, make sure to check the version of ``magic-pdf`` using the following command:
- .. code:: sh
- magic-pdf --version
- If the version number is less than 1.3.0, please report the issue.
- 6. Download Models
- ~~~~~~~~~~~~~~~~~~
- Refer to detailed instructions on :doc:`download_model_weight_files`
- 7. Understand the Location of the Configuration File
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- After completing the `6. Download Models <#6-download-models>`__ step,
- the script will automatically generate a ``magic-pdf.json`` file in the
- user directory and configure the default model path. You can find the
- ``magic-pdf.json`` file in your user directory.
- .. admonition:: TIP
- :class: tip
- The user directory for Linux is “/home/username”.
- 8. First Run
- ~~~~~~~~~~~~
- Download a sample file from the repository and test it.
- .. code:: sh
- wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf
- magic-pdf -p small_ocr.pdf -o ./output
- 9. Test CUDA Acceleration
- ~~~~~~~~~~~~~~~~~~~~~~~~~
- If your graphics card has at least **8GB** of VRAM, follow these steps
- to test CUDA acceleration:
- 1. Modify the value of ``"device-mode"`` in the ``magic-pdf.json``
- configuration file located in your home directory.
- .. code:: json
- {
- "device-mode": "cuda"
- }
- 2. Test CUDA acceleration with the following command:
- .. code:: sh
- magic-pdf -p small_ocr.pdf -o ./output
- .. _windows_10_or_11_section:
- Windows 10/11
- --------------
- 1. Install CUDA and cuDNN
- ~~~~~~~~~~~~~~~~~~~~~~~~~
- You need to install a CUDA version that is compatible with torch's requirements. Currently, torch supports CUDA 11.8/12.4/12.6.
- - CUDA 11.8 https://developer.nvidia.com/cuda-11-8-0-download-archive
- - CUDA 12.4 https://developer.nvidia.com/cuda-12-4-0-download-archive
- - CUDA 12.6 https://developer.nvidia.com/cuda-12-6-0-download-archive
- 2. Install Anaconda
- ~~~~~~~~~~~~~~~~~~~
- If Anaconda is already installed, you can skip this step.
- Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe
- 3. Create an Environment Using Conda
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ::
- conda create -n mineru 'python<3.13' -y
- conda activate mineru
- 4. Install Applications
- ~~~~~~~~~~~~~~~~~~~~~~~
- ::
- pip install -U magic-pdf[full]
- .. admonition:: Important
- :class: tip
- ❗️After installation, verify the version of ``magic-pdf``:
- .. code:: bash
- magic-pdf --version
- If the version number is less than 1.3.0, please report it in the issues section.
- 5. Download Models
- ~~~~~~~~~~~~~~~~~~
- Refer to detailed instructions on :doc:`download_model_weight_files`
- 6. Understand the Location of the Configuration File
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- After completing the `5. Download Models <#5-download-models>`__ step,
- the script will automatically generate a ``magic-pdf.json`` file in the
- user directory and configure the default model path. You can find the
- ``magic-pdf.json`` file in your 【user directory】 .
- .. admonition:: Tip
- :class: tip
- The user directory for Windows is “C:/Users/username”.
- 7. First Run
- ~~~~~~~~~~~~
- Download a sample file from the repository and test it.
- .. code:: powershell
- wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf -O small_ocr.pdf
- magic-pdf -p small_ocr.pdf -o ./output
- 8. Test CUDA Acceleration
- ~~~~~~~~~~~~~~~~~~~~~~~~~
- If your graphics card has at least 8GB of VRAM, follow these steps to
- test CUDA-accelerated parsing performance.
- 1. **Overwrite the installation of torch and torchvision** supporting CUDA.(Please select the appropriate index-url based on your CUDA version. For more details, refer to the [PyTorch official website](https://pytorch.org/get-started/locally/).)
- .. code:: sh
- pip install --force-reinstall torch==2.6.0 torchvision==0.21.1 "numpy<2.0.0" --index-url https://download.pytorch.org/whl/cu124
- 2. **Modify the value of ``"device-mode"``** in the ``magic-pdf.json``
- configuration file located in your user directory.
- .. code:: json
- {
- "device-mode": "cuda"
- }
- 3. **Run the following command to test CUDA acceleration**:
- ::
- magic-pdf -p small_ocr.pdf -o ./output
|