| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- 流水线管道
- ===========
- 极简示例
- ^^^^^^^^
- .. code:: python
- import os
- from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
- from magic_pdf.data.dataset import PymuDocDataset
- from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
- # args
- pdf_file_name = "abc.pdf" # replace with the real pdf path
- name_without_suff = pdf_file_name.split(".")[0]
- # prepare env
- local_image_dir, local_md_dir = "output/images", "output"
- image_dir = str(os.path.basename(local_image_dir))
- os.makedirs(local_image_dir, exist_ok=True)
- image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
- local_md_dir
- )
- image_dir = str(os.path.basename(local_image_dir))
- # read bytes
- reader1 = FileBasedDataReader("")
- pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
- # proc
- ## Create Dataset Instance
- ds = PymuDocDataset(pdf_bytes)
- ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
- 运行以上的代码,会得到如下的结果
- .. code:: bash
- output/
- ├── abc.md
- └── images
- 除去初始化环境,如建立目录、导入依赖库等逻辑。真正将 ``pdf`` 转换为 ``markdown`` 的代码片段如下
- .. code::
- # read bytes
- reader1 = FileBasedDataReader("")
- pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
- # proc
- ## Create Dataset Instance
- ds = PymuDocDataset(pdf_bytes)
- ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
- ``ds.apply(doc_analyze, ocr=True)`` 会生成 ``InferenceResult`` 对象。 ``InferenceResult`` 对象执行 ``pipe_ocr_mode`` 方法会生成 ``PipeResult`` 对象。
- ``PipeResult`` 对象执行 ``dump_md`` 会在指定位置生成 ``markdown`` 文件。
- pipeline 的执行过程如下图所示
- .. image:: ../../_static/image/pipeline.drawio.svg
- .. raw:: html
- <br> </br>
- 目前划分出数据、推理、程序处理三个阶段,分别对应着图上的 ``Dataset``, ``InferenceResult``, ``PipeResult`` 这三个实体。通过 ``apply`` , ``doc_analyze`` 或 ``pipe_ocr_mode`` 等方法链接在一起。
- .. admonition:: Tip
- :class: tip
- 要想获得更多有关 Dataset、InferenceResult、PipeResult 的使用示例子,请前往 :doc:`../quick_start/to_markdown`
- 要想获得更多有关 Dataset、InferenceResult、PipeResult 的细节信息请前往英文版 MinerU 文档进行查看!
- 管道组合
- ^^^^^^^^^
- .. code:: python
- class Dataset(ABC):
- @abstractmethod
- def apply(self, proc: Callable, *args, **kwargs):
- """Apply callable method which.
- Args:
- proc (Callable): invoke proc as follows:
- proc(self, *args, **kwargs)
- Returns:
- Any: return the result generated by proc
- """
- pass
- class InferenceResult(InferenceResultBase):
- def apply(self, proc: Callable, *args, **kwargs):
- """Apply callable method which.
- Args:
- proc (Callable): invoke proc as follows:
- proc(inference_result, *args, **kwargs)
- Returns:
- Any: return the result generated by proc
- """
- return proc(copy.deepcopy(self._infer_res), *args, **kwargs)
- def pipe_ocr_mode(
- self,
- imageWriter: DataWriter,
- start_page_id=0,
- end_page_id=None,
- debug_mode=False,
- lang=None,
- ) -> PipeResult:
- pass
- class PipeResult:
- def apply(self, proc: Callable, *args, **kwargs):
- """Apply callable method which.
- Args:
- proc (Callable): invoke proc as follows:
- proc(pipeline_result, *args, **kwargs)
- Returns:
- Any: return the result generated by proc
- """
- return proc(copy.deepcopy(self._pipe_res), *args, **kwargs)
- ``Dataset`` 、 ``InferenceResult`` 和 ``PipeResult`` 类均有 ``apply`` method。可用于组合不同阶段的运算过程。
- 如下所示,``MinerU`` 提供一套组合这些类的计算过程。
- .. code:: python
- # proc
- ## Create Dataset Instance
- ds = PymuDocDataset(pdf_bytes)
- ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
- 用户可以根据的需求,自行实现一些组合用的函数。比如用户通过 ``apply`` 方法实现一个统计 ``pdf`` 文件页数的功能。
- .. code:: python
- from magic_pdf.data.data_reader_writer import FileBasedDataReader
- from magic_pdf.data.dataset import PymuDocDataset
- # args
- pdf_file_name = "abc.pdf" # replace with the real pdf path
- # read bytes
- reader1 = FileBasedDataReader("")
- pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
- # proc
- ## Create Dataset Instance
- ds = PymuDocDataset(pdf_bytes)
- def count_page(ds)-> int:
- return len(ds)
- print("page number: ", ds.apply(count_page)) # will output the page count of `abc.pdf`
|