doc_analyze_by_custom_model.py 2.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. import time
  2. import fitz
  3. import numpy as np
  4. from loguru import logger
  5. from magic_pdf.model.model_list import MODEL
  6. import magic_pdf.model as model_config
  7. def dict_compare(d1, d2):
  8. return d1.items() == d2.items()
  9. def remove_duplicates_dicts(lst):
  10. unique_dicts = []
  11. for dict_item in lst:
  12. if not any(
  13. dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts
  14. ):
  15. unique_dicts.append(dict_item)
  16. return unique_dicts
  17. def load_images_from_pdf(pdf_bytes: bytes, dpi=200) -> list:
  18. try:
  19. from PIL import Image
  20. except ImportError:
  21. logger.error("Pillow not installed, please install by pip.")
  22. exit(1)
  23. images = []
  24. with fitz.open("pdf", pdf_bytes) as doc:
  25. for index in range(0, doc.page_count):
  26. page = doc[index]
  27. mat = fitz.Matrix(dpi / 72, dpi / 72)
  28. pm = page.get_pixmap(matrix=mat, alpha=False)
  29. # if width or height > 3000 pixels, don't enlarge the image
  30. if pm.width > 3000 or pm.height > 3000:
  31. pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
  32. img = Image.frombytes("RGB", (pm.width, pm.height), pm.samples)
  33. img = np.array(img)
  34. img_dict = {"img": img, "width": pm.width, "height": pm.height}
  35. images.append(img_dict)
  36. return images
  37. def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False):
  38. model = None
  39. if model_config.__model_mode__ == "lite":
  40. model = MODEL.Paddle
  41. elif model_config.__model_mode__ == "full":
  42. model = MODEL.PEK
  43. if model_config.__use_inside_model__:
  44. model_init_start = time.time()
  45. if model == MODEL.Paddle:
  46. from magic_pdf.model.pp_structure_v2 import CustomPaddleModel
  47. custom_model = CustomPaddleModel(ocr=ocr, show_log=show_log)
  48. elif model == MODEL.PEK:
  49. from magic_pdf.model.pdf_extract_kit import CustomPEKModel
  50. custom_model = CustomPEKModel(ocr=ocr, show_log=show_log)
  51. else:
  52. logger.error("Not allow model_name!")
  53. exit(1)
  54. model_init_cost = time.time() - model_init_start
  55. logger.info(f"model init cost: {model_init_cost}")
  56. else:
  57. logger.error("use_inside_model is False, not allow to use inside model")
  58. exit(1)
  59. images = load_images_from_pdf(pdf_bytes)
  60. model_json = []
  61. doc_analyze_start = time.time()
  62. for index, img_dict in enumerate(images):
  63. img = img_dict["img"]
  64. page_width = img_dict["width"]
  65. page_height = img_dict["height"]
  66. result = custom_model(img)
  67. page_info = {"page_no": index, "height": page_height, "width": page_width}
  68. page_dict = {"layout_dets": result, "page_info": page_info}
  69. model_json.append(page_dict)
  70. doc_analyze_cost = time.time() - doc_analyze_start
  71. logger.info(f"doc analyze cost: {doc_analyze_cost}")
  72. return model_json