user_api.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. """
  2. 用户输入:
  3. model数组,每个元素代表一个页面
  4. pdf在s3的路径
  5. 截图保存的s3位置
  6. 然后:
  7. 1)根据s3路径,调用spark集群的api,拿到ak,sk,endpoint,构造出s3PDFReader
  8. 2)根据用户输入的s3地址,调用spark集群的api,拿到ak,sk,endpoint,构造出s3ImageWriter
  9. 其余部分至于构造s3cli, 获取ak,sk都在code-clean里写代码完成。不要反向依赖!!!
  10. """
  11. import re
  12. from loguru import logger
  13. from magic_pdf.libs.commons import get_version
  14. from magic_pdf.rw import AbsReaderWriter
  15. from magic_pdf.pdf_parse_by_ocr_v2 import parse_pdf_by_ocr
  16. from magic_pdf.pdf_parse_by_txt_v2 import parse_pdf_by_txt
  17. PARSE_TYPE_TXT = "txt"
  18. PARSE_TYPE_OCR = "ocr"
  19. def parse_txt_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args,
  20. **kwargs):
  21. """
  22. 解析文本类pdf
  23. """
  24. pdf_info_dict = parse_pdf_by_txt(
  25. pdf_bytes,
  26. pdf_models,
  27. imageWriter,
  28. start_page_id=start_page,
  29. debug_mode=is_debug,
  30. )
  31. pdf_info_dict["_parse_type"] = PARSE_TYPE_TXT
  32. pdf_info_dict["_version_name"] = get_version()
  33. return pdf_info_dict
  34. def parse_ocr_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args,
  35. **kwargs):
  36. """
  37. 解析ocr类pdf
  38. """
  39. pdf_info_dict = parse_pdf_by_ocr(
  40. pdf_bytes,
  41. pdf_models,
  42. imageWriter,
  43. start_page_id=start_page,
  44. debug_mode=is_debug,
  45. )
  46. pdf_info_dict["_parse_type"] = PARSE_TYPE_OCR
  47. pdf_info_dict["_version_name"] = get_version()
  48. return pdf_info_dict
  49. def parse_union_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0,
  50. *args, **kwargs):
  51. """
  52. ocr和文本混合的pdf,全部解析出来
  53. """
  54. def parse_pdf(method):
  55. try:
  56. return method(
  57. pdf_bytes,
  58. pdf_models,
  59. imageWriter,
  60. start_page_id=start_page,
  61. debug_mode=is_debug,
  62. )
  63. except Exception as e:
  64. logger.exception(e)
  65. return None
  66. pdf_info_dict = parse_pdf(parse_pdf_by_txt)
  67. text_all = ""
  68. for page_dict in pdf_info_dict['pdf_info']:
  69. for para_block in page_dict['para_blocks']:
  70. if para_block['type'] in ['title', 'text']:
  71. for line in para_block['lines']:
  72. for span in line['spans']:
  73. text_all += span['content']
  74. def calculate_not_common_character_rate(text):
  75. garbage_regex = re.compile(r'[^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a\u3000-\u303f\uff00-\uffef]')
  76. # 计算乱码字符的数量
  77. garbage_count = len(garbage_regex.findall(text))
  78. total = len(text)
  79. if total == 0:
  80. return 0 # 避免除以零的错误
  81. return garbage_count / total
  82. def calculate_not_printable_rate(text):
  83. printable = sum(1 for c in text if c.isprintable())
  84. total = len(text)
  85. if total == 0:
  86. return 0 # 避免除以零的错误
  87. return (total - printable) / total
  88. # not_common_character_rate = calculate_not_common_character_rate(text_all)
  89. not_printable_rate = calculate_not_printable_rate(text_all)
  90. # 测试乱码pdf,not_common_character_rate > 0.95, not_printable_rate > 0.15
  91. # not_common_character_rate对小语种可能会有误伤,not_printable_rate对小语种较为友好
  92. if pdf_info_dict is None or pdf_info_dict.get("_need_drop", False) or not_printable_rate > 0.1:
  93. logger.warning(f"parse_pdf_by_txt drop or error or garbled_rate too large, switch to parse_pdf_by_ocr")
  94. pdf_info_dict = parse_pdf(parse_pdf_by_ocr)
  95. if pdf_info_dict is None:
  96. raise Exception("Both parse_pdf_by_txt and parse_pdf_by_ocr failed.")
  97. else:
  98. pdf_info_dict["_parse_type"] = PARSE_TYPE_OCR
  99. else:
  100. pdf_info_dict["_parse_type"] = PARSE_TYPE_TXT
  101. pdf_info_dict["_version_name"] = get_version()
  102. return pdf_info_dict