model_json_to_middle_json.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import time
  3. from loguru import logger
  4. from tqdm import tqdm
  5. from mineru.utils.config_reader import get_device, get_llm_aided_config
  6. from mineru.backend.pipeline.model_init import AtomModelSingleton
  7. from mineru.backend.pipeline.para_split import para_split
  8. from mineru.utils.block_pre_proc import prepare_block_bboxes, process_groups
  9. from mineru.utils.block_sort import sort_blocks_by_bbox
  10. from mineru.utils.boxbase import calculate_overlap_area_in_bbox1_area_ratio
  11. from mineru.utils.cut_image import cut_image_and_table
  12. from mineru.utils.enum_class import ContentType
  13. from mineru.utils.llm_aided import llm_aided_title
  14. from mineru.utils.model_utils import clean_memory
  15. from mineru.backend.pipeline.pipeline_magic_model import MagicModel
  16. from mineru.utils.ocr_utils import OcrConfidence
  17. from mineru.utils.span_block_fix import fill_spans_in_blocks, fix_discarded_block, fix_block_spans
  18. from mineru.utils.span_pre_proc import remove_outside_spans, remove_overlaps_low_confidence_spans, \
  19. remove_overlaps_min_spans, txt_spans_extract
  20. from mineru.version import __version__
  21. from mineru.utils.hash_utils import str_md5
  22. def page_model_info_to_page_info(page_model_info, image_dict, page, image_writer, page_index, ocr_enable=False, formula_enabled=True):
  23. scale = image_dict["scale"]
  24. page_pil_img = image_dict["img_pil"]
  25. page_img_md5 = str_md5(image_dict["img_base64"])
  26. page_w, page_h = map(int, page.get_size())
  27. magic_model = MagicModel(page_model_info, scale)
  28. """从magic_model对象中获取后面会用到的区块信息"""
  29. discarded_blocks = magic_model.get_discarded()
  30. text_blocks = magic_model.get_text_blocks()
  31. title_blocks = magic_model.get_title_blocks()
  32. inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations()
  33. img_groups = magic_model.get_imgs()
  34. table_groups = magic_model.get_tables()
  35. """对image和table的区块分组"""
  36. img_body_blocks, img_caption_blocks, img_footnote_blocks, maybe_text_image_blocks = process_groups(
  37. img_groups, 'image_body', 'image_caption_list', 'image_footnote_list'
  38. )
  39. table_body_blocks, table_caption_blocks, table_footnote_blocks, _ = process_groups(
  40. table_groups, 'table_body', 'table_caption_list', 'table_footnote_list'
  41. )
  42. """获取所有的spans信息"""
  43. spans = magic_model.get_all_spans()
  44. """某些图可能是文本块,通过简单的规则判断一下"""
  45. if len(maybe_text_image_blocks) > 0:
  46. for block in maybe_text_image_blocks:
  47. span_in_block_list = []
  48. for span in spans:
  49. if span['type'] == 'text' and calculate_overlap_area_in_bbox1_area_ratio(span['bbox'], block['bbox']) > 0.7:
  50. span_in_block_list.append(span)
  51. if len(span_in_block_list) > 0:
  52. # span_in_block_list中所有bbox的面积之和
  53. spans_area = sum((span['bbox'][2] - span['bbox'][0]) * (span['bbox'][3] - span['bbox'][1]) for span in span_in_block_list)
  54. # 求ocr_res_area和res的面积的比值
  55. block_area = (block['bbox'][2] - block['bbox'][0]) * (block['bbox'][3] - block['bbox'][1])
  56. if block_area > 0:
  57. ratio = spans_area / block_area
  58. if ratio > 0.25 and ocr_enable:
  59. # 移除block的group_id
  60. block.pop('group_id', None)
  61. # 符合文本图的条件就把块加入到文本块列表中
  62. text_blocks.append(block)
  63. else:
  64. # 如果不符合文本图的条件,就把块加回到图片块列表中
  65. img_body_blocks.append(block)
  66. else:
  67. img_body_blocks.append(block)
  68. """将所有区块的bbox整理到一起"""
  69. if formula_enabled:
  70. interline_equation_blocks = []
  71. if len(interline_equation_blocks) > 0:
  72. for block in interline_equation_blocks:
  73. spans.append({
  74. "type": ContentType.INTERLINE_EQUATION,
  75. 'score': block['score'],
  76. "bbox": block['bbox'],
  77. })
  78. all_bboxes, all_discarded_blocks, footnote_blocks = prepare_block_bboxes(
  79. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  80. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  81. discarded_blocks,
  82. text_blocks,
  83. title_blocks,
  84. interline_equation_blocks,
  85. page_w,
  86. page_h,
  87. )
  88. else:
  89. all_bboxes, all_discarded_blocks, footnote_blocks = prepare_block_bboxes(
  90. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  91. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  92. discarded_blocks,
  93. text_blocks,
  94. title_blocks,
  95. interline_equations,
  96. page_w,
  97. page_h,
  98. )
  99. """在删除重复span之前,应该通过image_body和table_body的block过滤一下image和table的span"""
  100. """顺便删除大水印并保留abandon的span"""
  101. spans = remove_outside_spans(spans, all_bboxes, all_discarded_blocks)
  102. """删除重叠spans中置信度较低的那些"""
  103. spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
  104. """删除重叠spans中较小的那些"""
  105. spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
  106. """根据parse_mode,构造spans,主要是文本类的字符填充"""
  107. if ocr_enable:
  108. pass
  109. else:
  110. """使用新版本的混合ocr方案."""
  111. spans = txt_spans_extract(page, spans, page_pil_img, scale, all_bboxes, all_discarded_blocks)
  112. """先处理不需要排版的discarded_blocks"""
  113. discarded_block_with_spans, spans = fill_spans_in_blocks(
  114. all_discarded_blocks, spans, 0.4
  115. )
  116. fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
  117. """如果当前页面没有有效的bbox则跳过"""
  118. if len(all_bboxes) == 0:
  119. return None
  120. """对image/table/interline_equation截图"""
  121. for span in spans:
  122. if span['type'] in [ContentType.IMAGE, ContentType.TABLE, ContentType.INTERLINE_EQUATION]:
  123. span = cut_image_and_table(
  124. span, page_pil_img, page_img_md5, page_index, image_writer, scale=scale
  125. )
  126. """span填充进block"""
  127. block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.5)
  128. """对block进行fix操作"""
  129. fix_blocks = fix_block_spans(block_with_spans)
  130. """同一行被断开的titile合并"""
  131. # merge_title_blocks(fix_blocks)
  132. """对block进行排序"""
  133. sorted_blocks = sort_blocks_by_bbox(fix_blocks, page_w, page_h, footnote_blocks)
  134. """构造page_info"""
  135. page_info = make_page_info_dict(sorted_blocks, page_index, page_w, page_h, fix_discarded_blocks)
  136. return page_info
  137. def result_to_middle_json(model_list, images_list, pdf_doc, image_writer, lang=None, ocr_enable=False, formula_enabled=True):
  138. middle_json = {"pdf_info": [], "_backend":"pipeline", "_version_name": __version__}
  139. for page_index, page_model_info in tqdm(enumerate(model_list), total=len(model_list), desc="Processing pages"):
  140. page = pdf_doc[page_index]
  141. image_dict = images_list[page_index]
  142. page_info = page_model_info_to_page_info(
  143. page_model_info, image_dict, page, image_writer, page_index, ocr_enable=ocr_enable, formula_enabled=formula_enabled
  144. )
  145. if page_info is None:
  146. page_w, page_h = map(int, page.get_size())
  147. page_info = make_page_info_dict([], page_index, page_w, page_h, [])
  148. middle_json["pdf_info"].append(page_info)
  149. """后置ocr处理"""
  150. need_ocr_list = []
  151. img_crop_list = []
  152. text_block_list = []
  153. for page_info in middle_json["pdf_info"]:
  154. for block in page_info['preproc_blocks']:
  155. if block['type'] in ['table', 'image']:
  156. for sub_block in block['blocks']:
  157. if sub_block['type'] in ['image_caption', 'image_footnote', 'table_caption', 'table_footnote']:
  158. text_block_list.append(sub_block)
  159. elif block['type'] in ['text', 'title']:
  160. text_block_list.append(block)
  161. for block in page_info['discarded_blocks']:
  162. text_block_list.append(block)
  163. for block in text_block_list:
  164. for line in block['lines']:
  165. for span in line['spans']:
  166. if 'np_img' in span:
  167. need_ocr_list.append(span)
  168. img_crop_list.append(span['np_img'])
  169. span.pop('np_img')
  170. if len(img_crop_list) > 0:
  171. atom_model_manager = AtomModelSingleton()
  172. ocr_model = atom_model_manager.get_atom_model(
  173. atom_model_name='ocr',
  174. ocr_show_log=False,
  175. det_db_box_thresh=0.3,
  176. lang=lang
  177. )
  178. ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
  179. assert len(ocr_res_list) == len(
  180. need_ocr_list), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_list)}'
  181. for index, span in enumerate(need_ocr_list):
  182. ocr_text, ocr_score = ocr_res_list[index]
  183. if ocr_score > OcrConfidence.min_confidence:
  184. span['content'] = ocr_text
  185. span['score'] = float(f"{ocr_score:.3f}")
  186. else:
  187. span['content'] = ''
  188. span['score'] = 0.0
  189. """分段"""
  190. para_split(middle_json["pdf_info"])
  191. """llm优化"""
  192. llm_aided_config = get_llm_aided_config()
  193. if llm_aided_config is not None:
  194. """标题优化"""
  195. title_aided_config = llm_aided_config.get('title_aided', None)
  196. if title_aided_config is not None:
  197. if title_aided_config.get('enable', False):
  198. llm_aided_title_start_time = time.time()
  199. llm_aided_title(middle_json["pdf_info"], title_aided_config)
  200. logger.info(f'llm aided title time: {round(time.time() - llm_aided_title_start_time, 2)}')
  201. """清理内存"""
  202. pdf_doc.close()
  203. clean_memory(get_device())
  204. return middle_json
  205. def make_page_info_dict(blocks, page_id, page_w, page_h, discarded_blocks):
  206. return_dict = {
  207. 'preproc_blocks': blocks,
  208. 'page_idx': page_id,
  209. 'page_size': [page_w, page_h],
  210. 'discarded_blocks': discarded_blocks,
  211. }
  212. return return_dict