vlm_analyze.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import os
  3. import time
  4. from loguru import logger
  5. from .utils import enable_custom_logits_processors, set_defult_gpu_memory_utilization, set_defult_batch_size
  6. from .model_output_to_middle_json import result_to_middle_json
  7. from ...data.data_reader_writer import DataWriter
  8. from mineru.utils.pdf_image_tools import load_images_from_pdf
  9. from ...utils.config_reader import get_device
  10. from ...utils.enum_class import ImageType
  11. from ...utils.models_download_utils import auto_download_and_get_model_root_path
  12. from mineru_vl_utils import MinerUClient
  13. from packaging import version
  14. class ModelSingleton:
  15. _instance = None
  16. _models = {}
  17. def __new__(cls, *args, **kwargs):
  18. if cls._instance is None:
  19. cls._instance = super().__new__(cls)
  20. return cls._instance
  21. def get_model(
  22. self,
  23. backend: str,
  24. model_path: str | None,
  25. server_url: str | None,
  26. **kwargs,
  27. ) -> MinerUClient:
  28. key = (backend, model_path, server_url)
  29. if key not in self._models:
  30. start_time = time.time()
  31. model = None
  32. processor = None
  33. vllm_llm = None
  34. vllm_async_llm = None
  35. batch_size = kwargs.get("batch_size", 0) # for transformers backend only
  36. max_concurrency = kwargs.get("max_concurrency", 100) # for http-client backend only
  37. http_timeout = kwargs.get("http_timeout", 600) # for http-client backend only
  38. if backend in ['transformers', 'vllm-engine', "vllm-async-engine"] and not model_path:
  39. model_path = auto_download_and_get_model_root_path("/","vlm")
  40. if backend == "transformers":
  41. try:
  42. from transformers import (
  43. AutoProcessor,
  44. Qwen2VLForConditionalGeneration,
  45. )
  46. from transformers import __version__ as transformers_version
  47. except ImportError:
  48. raise ImportError("Please install transformers to use the transformers backend.")
  49. if version.parse(transformers_version) >= version.parse("4.56.0"):
  50. dtype_key = "dtype"
  51. else:
  52. dtype_key = "torch_dtype"
  53. device = get_device()
  54. model = Qwen2VLForConditionalGeneration.from_pretrained(
  55. model_path,
  56. device_map={"": device},
  57. **{dtype_key: "auto"}, # type: ignore
  58. )
  59. processor = AutoProcessor.from_pretrained(
  60. model_path,
  61. use_fast=True,
  62. )
  63. if batch_size == 0:
  64. batch_size = set_defult_batch_size()
  65. else:
  66. os.environ["OMP_NUM_THREADS"] = "1"
  67. if backend == "vllm-engine":
  68. try:
  69. import vllm
  70. from mineru_vl_utils import MinerULogitsProcessor
  71. except ImportError:
  72. raise ImportError("Please install vllm to use the vllm-engine backend.")
  73. if "gpu_memory_utilization" not in kwargs:
  74. kwargs["gpu_memory_utilization"] = set_defult_gpu_memory_utilization()
  75. if "model" not in kwargs:
  76. kwargs["model"] = model_path
  77. if enable_custom_logits_processors() and ("logits_processors" not in kwargs):
  78. kwargs["logits_processors"] = [MinerULogitsProcessor]
  79. # 使用kwargs为 vllm初始化参数
  80. vllm_llm = vllm.LLM(**kwargs)
  81. elif backend == "vllm-async-engine":
  82. try:
  83. from vllm.engine.arg_utils import AsyncEngineArgs
  84. from vllm.v1.engine.async_llm import AsyncLLM
  85. from mineru_vl_utils import MinerULogitsProcessor
  86. except ImportError:
  87. raise ImportError("Please install vllm to use the vllm-async-engine backend.")
  88. if "gpu_memory_utilization" not in kwargs:
  89. kwargs["gpu_memory_utilization"] = set_defult_gpu_memory_utilization()
  90. if "model" not in kwargs:
  91. kwargs["model"] = model_path
  92. if enable_custom_logits_processors() and ("logits_processors" not in kwargs):
  93. kwargs["logits_processors"] = [MinerULogitsProcessor]
  94. # 使用kwargs为 vllm初始化参数
  95. vllm_async_llm = AsyncLLM.from_engine_args(AsyncEngineArgs(**kwargs))
  96. self._models[key] = MinerUClient(
  97. backend=backend,
  98. model=model,
  99. processor=processor,
  100. vllm_llm=vllm_llm,
  101. vllm_async_llm=vllm_async_llm,
  102. server_url=server_url,
  103. batch_size=batch_size,
  104. max_concurrency=max_concurrency,
  105. http_timeout=http_timeout,
  106. )
  107. elapsed = round(time.time() - start_time, 2)
  108. logger.info(f"get {backend} predictor cost: {elapsed}s")
  109. return self._models[key]
  110. def doc_analyze(
  111. pdf_bytes,
  112. image_writer: DataWriter | None,
  113. predictor: MinerUClient | None = None,
  114. backend="transformers",
  115. model_path: str | None = None,
  116. server_url: str | None = None,
  117. **kwargs,
  118. ):
  119. if predictor is None:
  120. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  121. # load_images_start = time.time()
  122. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  123. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  124. # load_images_time = round(time.time() - load_images_start, 2)
  125. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  126. # infer_start = time.time()
  127. results = predictor.batch_two_step_extract(images=images_pil_list)
  128. # infer_time = round(time.time() - infer_start, 2)
  129. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  130. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  131. return middle_json, results
  132. async def aio_doc_analyze(
  133. pdf_bytes,
  134. image_writer: DataWriter | None,
  135. predictor: MinerUClient | None = None,
  136. backend="transformers",
  137. model_path: str | None = None,
  138. server_url: str | None = None,
  139. **kwargs,
  140. ):
  141. if predictor is None:
  142. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  143. # load_images_start = time.time()
  144. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  145. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  146. # load_images_time = round(time.time() - load_images_start, 2)
  147. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  148. # infer_start = time.time()
  149. results = await predictor.aio_batch_two_step_extract(images=images_pil_list)
  150. # infer_time = round(time.time() - infer_start, 2)
  151. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  152. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  153. return middle_json, results