3b3a00a4a0/mineru_demo.ipynb)
[](https://arxiv.org/abs/2409.18839)
PDF-Extract-Kit: 高质量PDF解析工具箱🔥🔥🔥
更便捷的使用方式:MinerU桌面端。无需编程,无需登录,图形界面,简单交互,畅用无忧。🚀🚀🚀
vlm模式下,某些偶发的无效块内容导致解析中断问题vlm模式下,某些不完整的表结构导致的解析中断问题sglang-client模式下依然需要下载模型的问题sglang-client模式需要依赖torch等实际运行不需要的包的问题sglang-client实例时,只有第一个生效的问题all时,配置文件出现键值更新错误的问题sglang-engine模式下,0.4.7版本sglang的兼容性问题pymupdf 的依赖,推动项目向更开放、合规的开源方向迈进。middle_json 格式,兼容多数基于该格式的二次开发场景,确保生态业务无缝迁移。magic-pdf 更改为 mineru,命令行工具也由 magic-pdf 改为 mineru,请同步更新脚本与调用命令。ch_server模型更新为PP-OCRv5_rec_server,ch_lite模型更新为PP-OCRv5_rec_mobile(需更新模型)
PP-OCRv4_server_rec_doc。lang='ch_server'(python api)或--lang ch_server(命令行)自行选择相应的模型:
ch :PP-OCRv4_rec_server_doc(默认)(中英日繁混合/1.5w字典)ch_server :PP-OCRv5_rec_server(中英日繁混合+手写场景/1.8w字典)ch_lite :PP-OCRv5_rec_mobile(中英日繁混合+手写场景/1.8w字典)ch_server_v4 :PP-OCRv4_rec_server(中英混合/6k字典)ch_lite_v4 :PP-OCRv4_rec_mobile(中英混合/6k字典)huggingface和modelscope的demo已更新为支持手写识别和ppocrv5模型的版本,可自行在线体验2025/04/29 1.3.10 发布
<li>支持使用自定义公式标识符,可通过修改用户目录下的<code>magic-pdf.json</code>文件中的<code>latex-delimiter-config</code>项实现。</li>
2025/04/27 1.3.9 发布
<li>优化公式解析功能,提升公式渲染的成功率</li>
2025/04/23 1.3.8 发布
<li><code>ocr</code>默认模型(<code>ch</code>)更新为<code>PP-OCRv4_server_rec_doc</code>(需更新模型)
<ul>
<li><code>PP-OCRv4_server_rec_doc</code>是在<code>PP-OCRv4_server_rec</code>的基础上,在更多中文文档数据和PP-OCR训练数据的混合数据训练而成,增加了部分繁体字、日文、特殊字符的识别能力,可支持识别的字符为1.5万+,除文档相关的文字识别能力提升外,也同时提升了通用文字的识别能力。</li>
<li><a href="https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_recognition.html#_3">PP-OCRv4_server_rec_doc/PP-OCRv4_server_rec/PP-OCRv4_mobile_rec 性能对比</a></li>
<li>经验证,<code>PP-OCRv4_server_rec_doc</code>模型在<code>中英日繁</code>单种语言或多种语言混合场景均有明显精度提升,且速度与<code>PP-OCRv4_server_rec</code>相当,适合绝大部分场景使用。</li>
<li><code>PP-OCRv4_server_rec_doc</code>在小部分纯英文场景可能会发生单词粘连问题,<code>PP-OCRv4_server_rec</code>则在此场景下表现更好,因此我们保留了<code>PP-OCRv4_server_rec</code>模型,用户可通过增加参数<code>lang='ch_server'</code>(python api)或<code>--lang ch_server</code>(命令行)调用。</li>
</ul>
</li>
2025/04/22 1.3.7 发布
<li>修复表格解析模型初始化时lang参数失效的问题</li>
<li>修复在<code>cpu</code>模式下ocr和表格解析速度大幅下降的问题</li>
2025/04/16 1.3.4 发布
<li>通过移除一些无用的块,小幅提升了ocr-det的速度</li>
<li>修复部分情况下由footnote导致的页面内排序错误</li>
2025/04/12 1.3.2 发布
<li>修复了windows系统下,在python3.13环境安装时一些依赖包版本不兼容的问题</li>
<li>优化批量推理时的内存占用</li>
<li>优化旋转90度表格的解析效果</li>
<li>优化财报样本中超大表格的解析效果</li>
<li>修复了在未指定OCR语言时,英文文本区域偶尔出现的单词黏连问题(需要更新模型)</li>
2025/04/08 1.3.1 发布
<li>修复了一些兼容问题
<ul>
<li>支持python 3.13</li>
<li>为部分过时的linux系统(如centos7)做出最后适配,并不再保证后续版本的继续支持,<a href="https://github.com/opendatalab/MinerU/issues/1004">安装说明</a></li>
</ul>
</li>
2025/04/03 1.3.0 发布
<li>安装与兼容性优化
<ul>
<li>通过移除layout中<code>layoutlmv3</code>的使用,解决了由<code>detectron2</code>导致的兼容问题</li>
<li>torch版本兼容扩展到2.2~2.6(2.5除外)</li>
<li>cuda兼容支持11.8/12.4/12.6/12.8(cuda版本由torch决定),解决部分用户50系显卡与H系显卡的兼容问题</li>
<li>python兼容版本扩展到3.10~3.12,解决了在非3.10环境下安装时自动降级到0.6.1的问题</li>
<li>优化离线部署流程,部署成功后不需要联网下载任何模型文件</li>
</ul>
</li>
<li>性能优化
<ul>
<li>通过支持多个pdf文件的batch处理(<a href="demo/batch_demo.py">脚本样例</a>),提升了批量小文件的解析速度 (与1.0.1版本相比,公式解析速度最高提升超过1400%,整体解析速度最高提升超过500%)</li>
<li>通过优化mfr模型的加载和使用,降低了显存占用并提升了解析速度(需重新执行<a href="docs/how_to_download_models_zh_cn.md">模型下载流程</a>以获得模型文件的增量更新)</li>
<li>优化显存占用,最低仅需6GB即可运行本项目</li>
<li>优化了在mps设备上的运行速度</li>
</ul>
</li>
<li>解析效果优化
<ul>
<li>mfr模型更新到<code>unimernet(2503)</code>,解决多行公式中换行丢失的问题</li>
</ul>
</li>
<li>易用性优化
<ul>
<li>通过使用<code>paddleocr2torch</code>,完全替代<code>paddle</code>框架以及<code>paddleocr</code>在项目中的使用,解决了<code>paddle</code>和<code>torch</code>的冲突问题,和由于<code>paddle</code>框架导致的线程不安全问题</li>
<li>解析过程增加实时进度条显示,精准把握解析进度,让等待不再痛苦</li>
</ul>
</li>
2025/03/03 1.2.1 发布,修复了一些问题
<li>修复在字母与数字的全角转半角操作时对标点符号的影响</li>
<li>修复在某些情况下caption的匹配不准确问题</li>
<li>修复在某些情况下的公式span丢失问题</li>
2025/02/24 1.2.0 发布,这个版本我们修复了一些问题,提升了解析的效率与精度:
<li>性能优化
<ul>
<li>auto模式下pdf文档的分类速度提升</li>
</ul>
</li>
<li>解析优化
<ul>
<li>优化对包含水印文档的解析逻辑,显著提升包含水印文档的解析效果</li>
<li>改进了单页内多个图像/表格与caption的匹配逻辑,提升了复杂布局下图文匹配的准确性</li>
</ul>
</li>
<li>问题修复
<ul>
<li>修复在某些情况下图片/表格span被填充进textblock导致的异常</li>
<li>修复在某些情况下标题block为空的问题</li>
</ul>
</li>
2025/01/22 1.1.0 发布,在这个版本我们重点提升了解析的精度与效率:
<li>模型能力升级(需重新执行 <a href="https://github.com/opendatalab/MinerU/docs/how_to_download_models_zh_cn.md">模型下载流程</a> 以获得模型文件的增量更新)
<ul>
<li>布局识别模型升级到最新的 `doclayout_yolo(2501)` 模型,提升了layout识别精度</li>
<li>公式解析模型升级到最新的 `unimernet(2501)` 模型,提升了公式识别精度</li>
</ul>
</li>
<li>性能优化
<ul>
<li>在配置满足一定条件(显存16GB+)的设备上,通过优化资源占用和重构处理流水线,整体解析速度提升50%以上</li>
</ul>
</li>
<li>解析效果优化
<ul>
<li>在线demo(<a href="https://mineru.net/OpenSourceTools/Extractor">mineru.net</a> / <a href="https://huggingface.co/spaces/opendatalab/MinerU">huggingface</a> / <a href="https://www.modelscope.cn/studios/OpenDataLab/MinerU">modelscope</a>)上新增标题分级功能(测试版本,默认开启),支持对标题进行分级,提升文档结构化程度</li>
</ul>
</li>
2025/01/10 1.0.1 发布,这是我们的第一个正式版本,在这个版本中,我们通过大量重构带来了全新的API接口和更广泛的兼容性,以及全新的自动语言识别功能:
<li>全新API接口
<ul>
<li>对于数据侧API,我们引入了Dataset类,旨在提供一个强大而灵活的数据处理框架。该框架当前支持包括图像(.jpg及.png)、PDF、Word(.doc及.docx)、以及PowerPoint(.ppt及.pptx)在内的多种文档格式,确保了从简单到复杂的数据处理任务都能得到有效的支持。</li>
<li>针对用户侧API,我们将MinerU的处理流程精心设计为一系列可组合的Stage阶段。每个Stage代表了一个特定的处理步骤,用户可以根据自身需求自由地定义新的Stage,并通过创造性地组合这些阶段来定制专属的数据处理流程。</li>
</ul>
</li>
<li>更广泛的兼容性适配
<ul>
<li>通过优化依赖环境和配置项,确保在ARM架构的Linux系统上能够稳定高效运行。</li>
<li>深度适配华为昇腾NPU加速,积极响应信创要求,提供自主可控的高性能计算能力,助力人工智能应用平台的国产化应用与发展。 <a href="https://github.com/opendatalab/MinerU/docs/README_Ascend_NPU_Acceleration_zh_CN.md">NPU加速教程</a></li>
</ul>
</li>
<li>自动语言识别
<ul>
<li>通过引入全新的语言识别模型, 在文档解析中将 `lang` 配置为 `auto`,即可自动选择合适的OCR语言模型,提升扫描类文档解析的准确性。</li>
</ul>
</li>
2024/11/22 0.10.0发布,通过引入混合OCR文本提取能力,
<li>在公式密集、span区域不规范、部分文本使用图像表现等复杂文本分布场景下获得解析效果的显著提升</li>
<li>同时具备文本模式内容提取准确、速度更快与OCR模式span/line区域识别更准的双重优势</li>
2024/11/15 0.9.3发布,为表格识别功能接入了RapidTable,单表解析速度提升10倍以上,准确率更高,显存占用更低
2024/11/06 0.9.2发布,为表格识别功能接入了StructTable-InternVL2-1B模型
2024/10/31 0.9.0发布,这是我们进行了大量代码重构的全新版本,解决了众多问题,提升了性能,降低了硬件需求,并提供了更丰富的易用性:
<li>重构排序模块代码,使用 <a href="https://github.com/ppaanngggg/layoutreader">layoutreader</a> 进行阅读顺序排序,确保在各种排版下都能实现极高准确率</li>
<li>重构段落拼接模块,在跨栏、跨页、跨图、跨表情况下均能实现良好的段落拼接效果</li>
<li>重构列表和目录识别功能,极大提升列表块和目录块识别的准确率及对应文本段落的解析效果</li>
<li>重构图、表与描述性文本的匹配逻辑,大幅提升 caption 和 footnote 与图表的匹配准确率,并将描述性文本的丢失率降至接近0</li>
<li>增加 OCR 的多语言支持,支持 84 种语言的检测与识别,语言支持列表详见 <a href="https://paddlepaddle.github.io/PaddleOCR/latest/ppocr/blog/multi_languages.html#5">OCR 语言支持列表</a></li>
<li>增加显存回收逻辑及其他显存优化措施,大幅降低显存使用需求。开启除表格加速外的全部加速功能(layout/公式/OCR)的显存需求从16GB降至8GB,开启全部加速功能的显存需求从24GB降至10GB</li>
<li>优化配置文件的功能开关,增加独立的公式检测开关,无需公式检测时可大幅提升速度和解析效果</li>
<li>集成 <a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit 1.0</a>
<ul>
<li>加入自研的 `doclayout_yolo` 模型,在相近解析效果情况下比原方案提速10倍以上,可通过配置文件与 `layoutlmv3` 自由切换</li>
<li>公式解析升级至 `unimernet 0.2.1`,在提升公式解析准确率的同时,大幅降低显存需求</li>
<li>因 `PDF-Extract-Kit 1.0` 更换仓库,需要重新下载模型,步骤详见 <a href="https://github.com/opendatalab/MinerU/docs/how_to_download_models_zh_cn.md">如何下载模型</a></li>
</ul>
</li>
2024/09/09 0.8.0发布,支持Dockerfile快速部署,同时上线了huggingface、modelscope demo
2024/08/30 0.7.1发布,集成了paddle tablemaster表格识别功能
2024/08/09 0.7.0b1发布,简化安装步骤提升易用性,加入表格识别功能
2024/08/01 0.6.2b1发布,优化了依赖冲突问题和安装文档
2024/07/05 首次开源
MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。 MinerU诞生于书生-浦语的预训练过程中,我们将会集中精力解决科技文献中的符号转化问题,希望在大模型时代为科技发展做出贡献。 相比国内外知名商用产品MinerU还很年轻,如果遇到问题或者结果不及预期请到issue提交问题,同时附上相关PDF。
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
如果遇到任何安装问题,请先查询 FAQ
如果遇到解析效果不及预期,参考 Known Issues[!WARNING] 安装前必看——软硬件环境支持说明
为了确保项目的稳定性和可靠性,我们在开发过程中仅对特定的软硬件环境进行优化和测试。这样当用户在推荐的系统配置上部署和运行项目时,能够获得最佳的性能表现和最少的兼容性问题。
通过集中资源和精力于主线环境,我们团队能够更高效地解决潜在的BUG,及时开发新功能。
在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。
| 解析后端 | pipeline | vlm-transformers | vlm-sglang |
| 操作系统 | windows/linux/mac | windows/linux | windows(wsl2)/linux |
| 内存要求 | 最低16G以上,推荐32G以上 | ||
| 磁盘空间要求 | 20G以上,推荐使用SSD | ||
| python版本 | 3.10-3.13 | ||
| CPU推理支持 | ✅ | ❌ | ❌ |
| GPU要求 | Turing及以后架构,6G显存以上或Apple Silicon | Ampere及以后架构,8G显存以上 | Ampere及以后架构,24G显存及以上 |
pip install --upgrade pip -i https://mirrors.aliyun.com/pypi/simple
pip install uv -i https://mirrors.aliyun.com/pypi/simple
uv pip install -U "mineru[core]" -i https://mirrors.aliyun.com/pypi/simple
git clone https://github.com/opendatalab/MinerU.git
cd MinerU
uv pip install -e .[core] -i https://mirrors.aliyun.com/pypi/simple
[!NOTE] Linux和macOS系统安装后自动支持cuda/mps加速,Windows用户如需使用cuda加速, 请前往 Pytorch官网 选择合适的cuda版本安装pytorch。
如需使用 sglang 加速 VLM 模型推理,请选择合适的方式安装完整版本:
使用uv或pip安装
uv pip install -U "mineru[all]" -i https://mirrors.aliyun.com/pypi/simple
从源码安装:
uv pip install -e .[all] -i https://mirrors.aliyun.com/pypi/simple
使用 Dockerfile 构建镜像:
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/china/Dockerfile
docker build -t mineru-sglang:latest -f Dockerfile .
启动 Docker 容器:
docker run --gpus all \
--shm-size 32g \
-p 30000:30000 \
--ipc=host \
mineru-sglang:latest \
mineru-sglang-server --host 0.0.0.0 --port 30000
或使用 Docker Compose 启动:
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/compose.yaml
docker compose -f compose.yaml up -d
[!TIP] Dockerfile默认使用
lmsysorg/sglang:v0.4.7-cu124作为基础镜像,如有需要,您可以自行修改为其他平台版本。
uv pip install -U mineru -i https://mirrors.aliyun.com/pypi/simple
mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://<host_ip>:<port>
最简单的命令行调用方式如下:
mineru -p <input_path> -o <output_path>
<input_path>:本地 PDF 文件或目录(支持 pdf/png/jpg/jpeg)<output_path>:输出目录获取所有可用参数说明:
mineru --help
Usage: mineru [OPTIONS]
Options:
-v, --version 显示版本并退出
-p, --path PATH 输入文件路径或目录(必填)
-o, --output PATH 输出目录(必填)
-m, --method [auto|txt|ocr] 解析方法:auto(默认)、txt、ocr(仅用于 pipeline 后端)
-b, --backend [pipeline|vlm-transformers|vlm-sglang-engine|vlm-sglang-client]
解析后端(默认为 pipeline)
-l, --lang [ch|ch_server|... ] 指定文档语言(可提升 OCR 准确率,仅用于 pipeline 后端)
-u, --url TEXT 当使用 sglang-client 时,需指定服务地址
-s, --start INTEGER 开始解析的页码(从 0 开始)
-e, --end INTEGER 结束解析的页码(从 0 开始)
-f, --formula BOOLEAN 是否启用公式解析(默认开启,仅 pipeline 后端)
-t, --table BOOLEAN 是否启用表格解析(默认开启,仅 pipeline 后端)
-d, --device TEXT 推理设备(如 cpu/cuda/cuda:0/npu/mps,仅 pipeline 后端)
--vram INTEGER 单进程最大 GPU 显存占用(仅 pipeline 后端)
--source [huggingface|modelscope|local]
模型来源,默认 huggingface
--help 显示帮助信息
MinerU 默认在首次运行时自动从 HuggingFace 下载所需模型。若无法访问 HuggingFace,可通过以下方式切换模型源:
mineru -p <input_path> -o <output_path> --source modelscope
或设置环境变量:
export MINERU_MODEL_SOURCE=modelscope
mineru -p <input_path> -o <output_path>
mineru-models-download --help
或使用交互式命令行工具选择模型下载:
mineru-models-download
下载完成后,模型路径会在当前终端窗口输出,并自动写入用户目录下的 mineru.json。
mineru -p <input_path> -o <output_path> --source local
或通过环境变量启用:
export MINERU_MODEL_SOURCE=local
mineru -p <input_path> -o <output_path>
mineru -p <input_path> -o <output_path> -b vlm-sglang-engine
启动 Server:
mineru-sglang-server --port 30000
[!TIP] sglang-server 有一些常用参数可以配置:
- 如您有两张显存为
12G或16G的显卡,可以通过张量并行(TP)模式使用:--tp 2- 如您有两张
11G显卡,除了张量并行外,还需要调低KV缓存大小,可以使用:--tp 2 --mem-fraction-static 0.7- 如果您有超过多张
24G以上显卡,可以使用sglang的多卡并行模式来增加吞吐量:--dp 2- 同时您可以启用
torch.compile来将推理速度加速约15%:--enable-torch-compile- 如果您想了解更多有关
sglang的参数使用方法,请参考 sglang官方文档
在另一个终端中使用 Client 调用:
mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://127.0.0.1:30000
[!TIP] 更多关于输出文件的信息,请参考 输出文件说明
您也可以通过 Python 代码调用 MinerU,示例代码请参考: 👉 Python 调用示例
社区开发者基于 MinerU 进行了多种二次开发,包括:
这些项目通常提供更好的用户体验和更多功能。
详细部署方式请参阅: 👉 衍生项目说明
本项目目前部分模型基于YOLO训练,但因其遵循AGPL协议,可能对某些使用场景构成限制。未来版本迭代中,我们计划探索并替换为许可条款更为宽松的模型,以提升用户友好度及灵活性。
@misc{wang2024mineruopensourcesolutionprecise,
title={MinerU: An Open-Source Solution for Precise Document Content Extraction},
author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
year={2024},
eprint={2409.18839},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2409.18839},
}
@article{he2024opendatalab,
title={Opendatalab: Empowering general artificial intelligence with open datasets},
author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
journal={arXiv preprint arXiv:2407.13773},
year={2024}
}
Magic-Doc Fast speed ppt/pptx/doc/docx/pdf extraction tool
Magic-HTML Mixed web page extraction tool