| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- import random
- import fitz
- import cv2
- from paddleocr import PPStructure
- from PIL import Image
- from loguru import logger
- import numpy as np
- def region_to_bbox(region):
- x0 = region[0][0]
- y0 = region[0][1]
- x1 = region[2][0]
- y1 = region[2][1]
- return [x0, y0, x1, y1]
- def dict_compare(d1, d2):
- return d1.items() == d2.items()
- def remove_duplicates_dicts(lst):
- unique_dicts = []
- for dict_item in lst:
- if not any(
- dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts
- ):
- unique_dicts.append(dict_item)
- return unique_dicts
- def load_imags_from_pdf(pdf_bytes: bytes, dpi=200):
- imgs = []
- with fitz.open("pdf", pdf_bytes) as doc:
- for index in range(0, doc.page_count):
- page = doc[index]
- dpi = 200
- mat = fitz.Matrix(dpi / 72, dpi / 72)
- pm = page.get_pixmap(matrix=mat, alpha=False)
- # if width or height > 2000 pixels, don't enlarge the image
- # if pm.width > 2000 or pm.height > 2000:
- # pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
- img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
- img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
- img_dict = {"img": img, "width": pm.width, "height": pm.height}
- imgs.append(img_dict)
- class CustomPaddleModel:
- def __init___(self, ocr: bool = False, show_log: bool = False):
- self.model = PPStructure(table=False, ocr=ocr, show_log=show_log)
- def __call__(self, img):
- result = self.model(img)
- spans = []
- for line in result:
- line.pop("img")
- """
- 为paddle输出适配type no.
- title: 0 # 标题
- text: 1 # 文本
- header: 2 # abandon
- footer: 2 # abandon
- reference: 1 # 文本 or abandon
- equation: 8 # 行间公式 block
- equation: 14 # 行间公式 text
- figure: 3 # 图片
- figure_caption: 4 # 图片描述
- table: 5 # 表格
- table_caption: 6 # 表格描述
- """
- if line["type"] == "title":
- line["category_id"] = 0
- elif line["type"] in ["text", "reference"]:
- line["category_id"] = 1
- elif line["type"] == "figure":
- line["category_id"] = 3
- elif line["type"] == "figure_caption":
- line["category_id"] = 4
- elif line["type"] == "table":
- line["category_id"] = 5
- elif line["type"] == "table_caption":
- line["category_id"] = 6
- elif line["type"] == "equation":
- line["category_id"] = 8
- elif line["type"] in ["header", "footer"]:
- line["category_id"] = 2
- else:
- logger.warning(f"unknown type: {line['type']}")
- # 兼容不输出score的paddleocr版本
- if line.get("score") is None:
- line["score"] = 0.5 + random.random() * 0.5
- res = line.pop("res", None)
- if res is not None and len(res) > 0:
- for span in res:
- new_span = {
- "category_id": 15,
- "bbox": region_to_bbox(span["text_region"]),
- "score": span["confidence"],
- "text": span["text"],
- }
- spans.append(new_span)
- if len(spans) > 0:
- result.extend(spans)
- result = remove_duplicates_dicts(result)
- return result
- def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False):
- imgs = load_imags_from_pdf(pdf_bytes)
- custom_paddle = CustomPaddleModel()
- model_json = []
- for index, img_dict in enumerate(imgs):
- img = img_dict["img"]
- page_width = img_dict["width"]
- page_height = img_dict["height"]
- result = custom_paddle(img)
- page_info = {"page_no": index, "height": page_height, "width": page_width}
- page_dict = {"layout_dets": result, "page_info": page_info}
- model_json.append(page_dict)
- return model_json
|