boost_with_cuda.rst 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. Boost With Cuda
  2. ================
  3. If your device supports CUDA and meets the GPU requirements of the
  4. mainline environment, you can use GPU acceleration. Please select the
  5. appropriate guide based on your system:
  6. - :ref:`ubuntu_22_04_lts_section`
  7. - :ref:`windows_10_or_11_section`
  8. .. _ubuntu_22_04_lts_section:
  9. Ubuntu 22.04 LTS
  10. -----------------
  11. 1. Check if NVIDIA Drivers Are Installed
  12. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. .. code:: sh
  14. nvidia-smi
  15. If you see information similar to the following, it means that the
  16. NVIDIA drivers are already installed, and you can skip Step 2.
  17. .. note::
  18. ``CUDA Version`` should be >= 12.4, If the displayed version number is less than 12.4, please upgrade the driver.
  19. .. code:: text
  20. +---------------------------------------------------------------------------------------+
  21. | NVIDIA-SMI 570.133.07 Driver Version: 572.83 CUDA Version: 12.8 |
  22. |-----------------------------------------+----------------------+----------------------+
  23. | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
  24. | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
  25. | | | MIG M. |
  26. |=========================================+======================+======================|
  27. | 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
  28. | 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
  29. | | | N/A |
  30. +-----------------------------------------+----------------------+----------------------+
  31. 2. Install the Driver
  32. ~~~~~~~~~~~~~~~~~~~~~
  33. If no driver is installed, use the following command:
  34. .. code:: sh
  35. sudo apt-get update
  36. sudo apt-get install nvidia-driver-570-server
  37. Install the proprietary driver and restart your computer after
  38. installation.
  39. .. code:: sh
  40. reboot
  41. 3. Install Anaconda
  42. ~~~~~~~~~~~~~~~~~~~
  43. If Anaconda is already installed, skip this step.
  44. .. code:: sh
  45. wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
  46. bash Anaconda3-2024.06-1-Linux-x86_64.sh
  47. In the final step, enter ``yes``, close the terminal, and reopen it.
  48. 4. Create an Environment Using Conda
  49. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  50. Specify Python version 3.10~3.13.
  51. .. code:: sh
  52. conda create -n mineru 'python=3.12' -y
  53. conda activate mineru
  54. 5. Install Applications
  55. ~~~~~~~~~~~~~~~~~~~~~~~
  56. .. code:: sh
  57. pip install -U magic-pdf[full]
  58. .. admonition:: TIP
  59. :class: tip
  60. After installation, you can check the version of ``magic-pdf`` using the following command:
  61. .. code:: sh
  62. magic-pdf --version
  63. 6. Download Models
  64. ~~~~~~~~~~~~~~~~~~
  65. Refer to detailed instructions on :doc:`download_model_weight_files`
  66. 7. Understand the Location of the Configuration File
  67. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  68. After completing the `6. Download Models <#6-download-models>`__ step,
  69. the script will automatically generate a ``magic-pdf.json`` file in the
  70. user directory and configure the default model path. You can find the
  71. ``magic-pdf.json`` file in your user directory.
  72. .. admonition:: TIP
  73. :class: tip
  74. The user directory for Linux is “/home/username”.
  75. 8. First Run
  76. ~~~~~~~~~~~~
  77. Download a sample file from the repository and test it.
  78. .. code:: sh
  79. wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf
  80. magic-pdf -p small_ocr.pdf -o ./output
  81. 9. Test CUDA Acceleration
  82. ~~~~~~~~~~~~~~~~~~~~~~~~~
  83. If your graphics card has at least **8GB** of VRAM, follow these steps
  84. to test CUDA acceleration:
  85. 1. Modify the value of ``"device-mode"`` in the ``magic-pdf.json``
  86. configuration file located in your home directory.
  87. .. code:: json
  88. {
  89. "device-mode": "cuda"
  90. }
  91. 2. Test CUDA acceleration with the following command:
  92. .. code:: sh
  93. magic-pdf -p small_ocr.pdf -o ./output
  94. .. _windows_10_or_11_section:
  95. Windows 10/11
  96. --------------
  97. 1. Install CUDA
  98. ~~~~~~~~~~~~~~~~~~~~~~~~~
  99. You need to install a CUDA version that is compatible with torch's requirements. For details, please refer to the [official PyTorch website](https://pytorch.org/get-started/locally/).
  100. - CUDA 11.8 https://developer.nvidia.com/cuda-11-8-0-download-archive
  101. - CUDA 12.4 https://developer.nvidia.com/cuda-12-4-0-download-archive
  102. - CUDA 12.6 https://developer.nvidia.com/cuda-12-6-0-download-archive
  103. - CUDA 12.8 https://developer.nvidia.com/cuda-12-8-0-download-archive
  104. 2. Install Anaconda
  105. ~~~~~~~~~~~~~~~~~~~
  106. If Anaconda is already installed, you can skip this step.
  107. Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe
  108. 3. Create an Environment Using Conda
  109. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  110. ::
  111. conda create -n mineru 'python=3.12' -y
  112. conda activate mineru
  113. 4. Install Applications
  114. ~~~~~~~~~~~~~~~~~~~~~~~
  115. ::
  116. pip install -U magic-pdf[full]
  117. .. admonition:: Tip
  118. :class: tip
  119. After installation, you can check the version of ``magic-pdf``:
  120. .. code:: bash
  121. magic-pdf --version
  122. 5. Download Models
  123. ~~~~~~~~~~~~~~~~~~
  124. Refer to detailed instructions on :doc:`download_model_weight_files`
  125. 6. Understand the Location of the Configuration File
  126. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  127. After completing the `5. Download Models <#5-download-models>`__ step,
  128. the script will automatically generate a ``magic-pdf.json`` file in the
  129. user directory and configure the default model path. You can find the
  130. ``magic-pdf.json`` file in your 【user directory】 .
  131. .. admonition:: Tip
  132. :class: tip
  133. The user directory for Windows is “C:/Users/username”.
  134. 7. First Run
  135. ~~~~~~~~~~~~
  136. Download a sample file from the repository and test it.
  137. .. code:: powershell
  138. wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf -O small_ocr.pdf
  139. magic-pdf -p small_ocr.pdf -o ./output
  140. 8. Test CUDA Acceleration
  141. ~~~~~~~~~~~~~~~~~~~~~~~~~
  142. If your graphics card has at least 8GB of VRAM, follow these steps to
  143. test CUDA-accelerated parsing performance.
  144. 1. **Overwrite the installation of torch and torchvision** supporting CUDA.(Please select the appropriate index-url based on your CUDA version. For more details, refer to the [PyTorch official website](https://pytorch.org/get-started/locally/).)
  145. .. code:: sh
  146. pip install --force-reinstall torch torchvision --index-url https://download.pytorch.org/whl/cu124
  147. 2. **Modify the value of ``"device-mode"``** in the ``magic-pdf.json``
  148. configuration file located in your user directory.
  149. .. code:: json
  150. {
  151. "device-mode": "cuda"
  152. }
  153. 3. **Run the following command to test CUDA acceleration**:
  154. ::
  155. magic-pdf -p small_ocr.pdf -o ./output