| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- 数据读取和写入类
- =================
- 旨在从不同的媒介读取或写入字节。如果 MinerU 没有提供合适的类,你可以实现新的类以满足个人场景的需求。实现新的类非常容易,唯一的要求是继承自 DataReader 或 DataWriter。
- .. code:: python
- class SomeReader(DataReader):
- def read(self, path: str) -> bytes:
- pass
- def read_at(self, path: str, offset: int = 0, limit: int = -1) -> bytes:
- pass
- class SomeWriter(DataWriter):
- def write(self, path: str, data: bytes) -> None:
- pass
- def write_string(self, path: str, data: str) -> None:
- pass
- 读者可能会对 io 和本节的区别感到好奇。乍一看,这两部分非常相似。io 提供基本功能,而本节则更注重应用层面。用户可以构建自己的类以满足特定应用需求,这些类可能共享相同的基本 IO 功能。这就是为什么我们有 io。
- 重要类
- ------------
- .. code:: python
- class FileBasedDataReader(DataReader):
- def __init__(self, parent_dir: str = ''):
- pass
- class FileBasedDataWriter(DataWriter):
- def __init__(self, parent_dir: str = '') -> None:
- pass
- 类 FileBasedDataReader 使用单个参数 parent_dir 初始化。这意味着 FileBasedDataReader 提供的每个方法将具有以下特性:
- #. 从绝对路径文件读取内容,parent_dir 将被忽略。
- #. 从相对路径读取文件,首先将路径与 parent_dir 连接,然后从合并后的路径读取内容。
- .. note::
- `FileBasedDataWriter` 与 `FileBasedDataReader` 具有相同的行为。
- .. code:: python
- class MultiS3Mixin:
- def __init__(self, default_prefix: str, s3_configs: list[S3Config]):
- pass
- class MultiBucketS3DataReader(DataReader, MultiS3Mixin):
- pass
- MultiBucketS3DataReader 提供的所有读取相关方法将具有以下特性:
- #. 从完整的 S3 格式路径读取对象,例如 s3://test_bucket/test_object,default_prefix 将被忽略。
- #. 从相对路径读取对象,首先将路径与 default_prefix 连接并去掉 bucket_name,然后读取内容。bucket_name 是将 default_prefix 用分隔符 \ 分割后的第一个元素。
- .. note::
- MultiBucketS3DataWriter 与 MultiBucketS3DataReader 具有类似的行为。
- .. code:: python
- class S3DataReader(MultiBucketS3DataReader):
- pass
- S3DataReader 基于 MultiBucketS3DataReader 构建,但仅支持单个桶。S3DataWriter 也是类似的情况。
- 读取示例
- ---------
- .. code:: python
- import os
- from magic_pdf.data.data_reader_writer import *
- from magic_pdf.data.data_reader_writer import MultiBucketS3DataReader
- from magic_pdf.data.schemas import S3Config
- # 初始化 reader
- file_based_reader1 = FileBasedDataReader('')
- ## 读本地文件 abc
- file_based_reader1.read('abc')
- file_based_reader2 = FileBasedDataReader('/tmp')
- ## 读本地文件 /tmp/abc
- file_based_reader2.read('abc')
- ## 读本地文件 /tmp/logs/message.txt
- file_based_reader2.read('/tmp/logs/message.txt')
- # 初始化多桶 s3 reader
- bucket = "bucket" # 替换为有效的 bucket
- ak = "ak" # 替换为有效的 access key
- sk = "sk" # 替换为有效的 secret key
- endpoint_url = "endpoint_url" # 替换为有效的 endpoint_url
- bucket_2 = "bucket_2" # 替换为有效的 bucket
- ak_2 = "ak_2" # 替换为有效的 access key
- sk_2 = "sk_2" # 替换为有效的 secret key
- endpoint_url_2 = "endpoint_url_2" # 替换为有效的 endpoint_url
- test_prefix = 'test/unittest'
- multi_bucket_s3_reader1 = MultiBucketS3DataReader(f"{bucket}/{test_prefix}", [S3Config(
- bucket_name=bucket, access_key=ak, secret_key=sk, endpoint_url=endpoint_url
- ),
- S3Config(
- bucket_name=bucket_2,
- access_key=ak_2,
- secret_key=sk_2,
- endpoint_url=endpoint_url_2,
- )])
- ## 读文件 s3://{bucket}/{test_prefix}/abc
- multi_bucket_s3_reader1.read('abc')
- ## 读文件 s3://{bucket}/{test_prefix}/efg
- multi_bucket_s3_reader1.read(f's3://{bucket}/{test_prefix}/efg')
- ## 读文件 s3://{bucket2}/{test_prefix}/abc
- multi_bucket_s3_reader1.read(f's3://{bucket_2}/{test_prefix}/abc')
- # 初始化 s3 reader
- s3_reader1 = S3DataReader(
- test_prefix,
- bucket,
- ak,
- sk,
- endpoint_url
- )
- ## 读文件 s3://{bucket}/{test_prefix}/abc
- s3_reader1.read('abc')
- ## 读文件 s3://{bucket}/efg
- s3_reader1.read(f's3://{bucket}/efg')
- 写入示例
- ----------
- .. code:: python
- import os
- from magic_pdf.data.data_reader_writer import *
- from magic_pdf.data.data_reader_writer import MultiBucketS3DataWriter
- from magic_pdf.data.schemas import S3Config
- # 初始化 reader
- file_based_writer1 = FileBasedDataWriter("")
- ## 写数据 123 to abc
- file_based_writer1.write("abc", "123".encode())
- ## 写数据 123 to abc
- file_based_writer1.write_string("abc", "123")
- file_based_writer2 = FileBasedDataWriter("/tmp")
- ## 写数据 123 to /tmp/abc
- file_based_writer2.write_string("abc", "123")
- ## 写数据 123 to /tmp/logs/message.txt
- file_based_writer2.write_string("/tmp/logs/message.txt", "123")
- # 初始化多桶 s3 writer
- bucket = "bucket" # 替换为有效的 bucket
- ak = "ak" # 替换为有效的 access key
- sk = "sk" # 替换为有效的 secret key
- endpoint_url = "endpoint_url" # 替换为有效的 endpoint_url
- bucket_2 = "bucket_2" # 替换为有效的 bucket
- ak_2 = "ak_2" # 替换为有效的 access key
- sk_2 = "sk_2" # 替换为有效的 secret key
- endpoint_url_2 = "endpoint_url_2" # 替换为有效的 endpoint_url
- test_prefix = "test/unittest"
- multi_bucket_s3_writer1 = MultiBucketS3DataWriter(
- f"{bucket}/{test_prefix}",
- [
- S3Config(
- bucket_name=bucket, access_key=ak, secret_key=sk, endpoint_url=endpoint_url
- ),
- S3Config(
- bucket_name=bucket_2,
- access_key=ak_2,
- secret_key=sk_2,
- endpoint_url=endpoint_url_2,
- ),
- ],
- )
- ## 写数据 123 to s3://{bucket}/{test_prefix}/abc
- multi_bucket_s3_writer1.write_string("abc", "123")
- ## 写数据 123 to s3://{bucket}/{test_prefix}/abc
- multi_bucket_s3_writer1.write("abc", "123".encode())
- ## 写数据 123 to s3://{bucket}/{test_prefix}/efg
- multi_bucket_s3_writer1.write(f"s3://{bucket}/{test_prefix}/efg", "123".encode())
- ## 写数据 123 to s3://{bucket_2}/{test_prefix}/abc
- multi_bucket_s3_writer1.write(f's3://{bucket_2}/{test_prefix}/abc', '123'.encode())
- # 初始化 s3 writer
- s3_writer1 = S3DataWriter(test_prefix, bucket, ak, sk, endpoint_url)
- ## 写数据 123 to s3://{bucket}/{test_prefix}/abc
- s3_writer1.write("abc", "123".encode())
- ## 写数据 123 to s3://{bucket}/{test_prefix}/abc
- s3_writer1.write_string("abc", "123")
- ## 写数据 123 to s3://{bucket}/efg
- s3_writer1.write(f"s3://{bucket}/efg", "123".encode())
|