| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636 |
- import json
- import math
- from magic_pdf.libs.commons import fitz
- from loguru import logger
- from magic_pdf.libs.commons import join_path
- from magic_pdf.libs.coordinate_transform import get_scale_ratio
- from magic_pdf.libs.ocr_content_type import ContentType
- from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
- from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
- from magic_pdf.libs.local_math import float_gt
- from magic_pdf.libs.boxbase import (
- _is_in,
- bbox_relative_pos,
- bbox_distance,
- _is_part_overlap,
- calculate_overlap_area_in_bbox1_area_ratio,
- calculate_iou,
- )
- from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
- CAPATION_OVERLAP_AREA_RATIO = 0.6
- class MagicModel:
- """
- 每个函数没有得到元素的时候返回空list
- """
- def __fix_axis(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- page_no = model_page_info["page_info"]["page_no"]
- horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
- model_page_info, self.__docs[page_no]
- )
- layout_dets = model_page_info["layout_dets"]
- for layout_det in layout_dets:
- if layout_det.get("bbox") is not None:
- # 兼容直接输出bbox的模型数据,如paddle
- x0, y0, x1, y1 = layout_det["bbox"]
- else:
- # 兼容直接输出poly的模型数据,如xxx
- x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
- bbox = [
- int(x0 / horizontal_scale_ratio),
- int(y0 / vertical_scale_ratio),
- int(x1 / horizontal_scale_ratio),
- int(y1 / vertical_scale_ratio),
- ]
- layout_det["bbox"] = bbox
- # 删除高度或者宽度小于等于0的spans
- if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
- need_remove_list.append(layout_det)
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_low_confidence(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- layout_dets = model_page_info["layout_dets"]
- for layout_det in layout_dets:
- if layout_det["score"] <= 0.05:
- need_remove_list.append(layout_det)
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_high_iou_and_low_confidence(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- layout_dets = model_page_info["layout_dets"]
- for layout_det1 in layout_dets:
- for layout_det2 in layout_dets:
- if layout_det1 == layout_det2:
- continue
- if layout_det1["category_id"] in [
- 0,
- 1,
- 2,
- 3,
- 4,
- 5,
- 6,
- 7,
- 8,
- 9,
- ] and layout_det2["category_id"] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
- if (
- calculate_iou(layout_det1["bbox"], layout_det2["bbox"])
- > 0.9
- ):
- if layout_det1["score"] < layout_det2["score"]:
- layout_det_need_remove = layout_det1
- else:
- layout_det_need_remove = layout_det2
- if layout_det_need_remove not in need_remove_list:
- need_remove_list.append(layout_det_need_remove)
- else:
- continue
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __init__(self, model_list: list, docs: fitz.Document):
- self.__model_list = model_list
- self.__docs = docs
- """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
- self.__fix_axis()
- """删除置信度特别低的模型数据(<0.05),提高质量"""
- self.__fix_by_remove_low_confidence()
- """删除高iou(>0.9)数据中置信度较低的那个"""
- self.__fix_by_remove_high_iou_and_low_confidence()
- def __reduct_overlap(self, bboxes):
- N = len(bboxes)
- keep = [True] * N
- for i in range(N):
- for j in range(N):
- if i == j:
- continue
- if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
- keep[i] = False
- return [bboxes[i] for i in range(N) if keep[i]]
- def __tie_up_category_by_distance(
- self, page_no, subject_category_id, object_category_id
- ):
- """
- 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
- """
- ret = []
- MAX_DIS_OF_POINT = 10**9 + 7
- # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
- # 再求出筛选出的 subjects 和 object 的最短距离!
- def may_find_other_nearest_bbox(subject_idx, object_idx):
- ret = float("inf")
- x0 = min(
- all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
- )
- y0 = min(
- all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
- )
- x1 = max(
- all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
- )
- y1 = max(
- all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
- )
- object_area = abs(
- all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
- ) * abs(
- all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
- )
- for i in range(len(all_bboxes)):
- if (
- i == subject_idx
- or all_bboxes[i]["category_id"] != subject_category_id
- ):
- continue
- if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
- all_bboxes[i]["bbox"], [x0, y0, x1, y1]
- ):
- i_area = abs(
- all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
- ) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
- if i_area >= object_area:
- ret = min(float("inf"), dis[i][object_idx])
- return ret
- def expand_bbbox(idxes):
- x0s = [all_bboxes[idx]["bbox"][0] for idx in idxes]
- y0s = [all_bboxes[idx]["bbox"][1] for idx in idxes]
- x1s = [all_bboxes[idx]["bbox"][2] for idx in idxes]
- y1s = [all_bboxes[idx]["bbox"][3] for idx in idxes]
- return min(x0s), min(y0s), max(x1s), max(y1s)
- subjects = self.__reduct_overlap(
- list(
- map(
- lambda x: {"bbox": x["bbox"], "score": x["score"]},
- filter(
- lambda x: x["category_id"] == subject_category_id,
- self.__model_list[page_no]["layout_dets"],
- ),
- )
- )
- )
- objects = self.__reduct_overlap(
- list(
- map(
- lambda x: {"bbox": x["bbox"], "score": x["score"]},
- filter(
- lambda x: x["category_id"] == object_category_id,
- self.__model_list[page_no]["layout_dets"],
- ),
- )
- )
- )
- subject_object_relation_map = {}
- subjects.sort(
- key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
- ) # get the distance !
- all_bboxes = []
- for v in subjects:
- all_bboxes.append(
- {
- "category_id": subject_category_id,
- "bbox": v["bbox"],
- "score": v["score"],
- }
- )
- for v in objects:
- all_bboxes.append(
- {
- "category_id": object_category_id,
- "bbox": v["bbox"],
- "score": v["score"],
- }
- )
- N = len(all_bboxes)
- dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
- for i in range(N):
- for j in range(i):
- if (
- all_bboxes[i]["category_id"] == subject_category_id
- and all_bboxes[j]["category_id"] == subject_category_id
- ):
- continue
- dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
- dis[j][i] = dis[i][j]
- used = set()
- for i in range(N):
- # 求第 i 个 subject 所关联的 object
- if all_bboxes[i]["category_id"] != subject_category_id:
- continue
- seen = set()
- candidates = []
- arr = []
- for j in range(N):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- if (
- all_bboxes[j]["category_id"] != object_category_id
- or j in used
- or dis[i][j] == MAX_DIS_OF_POINT
- ):
- continue
- left, right, _, _ = bbox_relative_pos(
- all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
- ) # 由 pos_flag_count 相关逻辑保证本段逻辑准确性
- if left or right:
- one_way_dis = all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
- else:
- one_way_dis = all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1]
- if dis[i][j] > one_way_dis:
- continue
- arr.append((dis[i][j], j))
- arr.sort(key=lambda x: x[0])
- if len(arr) > 0:
- # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
- if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
- candidates.append(arr[0][1])
- seen.add(arr[0][1])
- # 已经获取初始种子
- for j in set(candidates):
- tmp = []
- for k in range(i + 1, N):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- if (
- all_bboxes[k]["category_id"] != object_category_id
- or k in used
- or k in seen
- or dis[j][k] == MAX_DIS_OF_POINT
- or dis[j][k] > dis[i][j]
- ):
- continue
- is_nearest = True
- for l in range(i + 1, N):
- if l in (j, k) or l in used or l in seen:
- continue
- if not float_gt(dis[l][k], dis[j][k]):
- is_nearest = False
- break
- if is_nearest:
- nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
- n_dis = bbox_distance(all_bboxes[i]["bbox"], [nx0, ny0, nx1, ny1])
- if float_gt(dis[i][j], n_dis):
- continue
- tmp.append(k)
- seen.add(k)
- candidates = tmp
- if len(candidates) == 0:
- break
- # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
- # 先扩一下 bbox,
- ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
- ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
- # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
- caption_poses = [
- [ox0, oy0, ix0, oy1],
- [ox0, oy0, ox1, iy0],
- [ox0, iy1, ox1, oy1],
- [ix1, oy0, ox1, oy1],
- ]
- caption_areas = []
- for bbox in caption_poses:
- embed_arr = []
- for idx in seen:
- if (
- calculate_overlap_area_in_bbox1_area_ratio(
- all_bboxes[idx]["bbox"], bbox
- )
- > CAPATION_OVERLAP_AREA_RATIO
- ):
- embed_arr.append(idx)
- if len(embed_arr) > 0:
- embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
- embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
- embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
- embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
- caption_areas.append(
- int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
- )
- else:
- caption_areas.append(0)
- subject_object_relation_map[i] = []
- if max(caption_areas) > 0:
- max_area_idx = caption_areas.index(max(caption_areas))
- caption_bbox = caption_poses[max_area_idx]
- for j in seen:
- if (
- calculate_overlap_area_in_bbox1_area_ratio(
- all_bboxes[j]["bbox"], caption_bbox
- )
- > CAPATION_OVERLAP_AREA_RATIO
- ):
- used.add(j)
- subject_object_relation_map[i].append(j)
- for i in sorted(subject_object_relation_map.keys()):
- result = {
- "subject_body": all_bboxes[i]["bbox"],
- "all": all_bboxes[i]["bbox"],
- "score": all_bboxes[i]["score"],
- }
- if len(subject_object_relation_map[i]) > 0:
- x0 = min(
- [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
- )
- y0 = min(
- [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
- )
- x1 = max(
- [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
- )
- y1 = max(
- [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
- )
- result["object_body"] = [x0, y0, x1, y1]
- result["all"] = [
- min(x0, all_bboxes[i]["bbox"][0]),
- min(y0, all_bboxes[i]["bbox"][1]),
- max(x1, all_bboxes[i]["bbox"][2]),
- max(y1, all_bboxes[i]["bbox"][3]),
- ]
- ret.append(result)
- total_subject_object_dis = 0
- # 计算已经配对的 distance 距离
- for i in subject_object_relation_map.keys():
- for j in subject_object_relation_map[i]:
- total_subject_object_dis += bbox_distance(
- all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
- )
- # 计算未匹配的 subject 和 object 的距离(非精确版)
- with_caption_subject = set(
- [
- key
- for key in subject_object_relation_map.keys()
- if len(subject_object_relation_map[i]) > 0
- ]
- )
- for i in range(N):
- if all_bboxes[i]["category_id"] != object_category_id or i in used:
- continue
- candidates = []
- for j in range(N):
- if (
- all_bboxes[j]["category_id"] != subject_category_id
- or j in with_caption_subject
- ):
- continue
- candidates.append((dis[i][j], j))
- if len(candidates) > 0:
- candidates.sort(key=lambda x: x[0])
- total_subject_object_dis += candidates[0][1]
- with_caption_subject.add(j)
- return ret, total_subject_object_dis
- def get_imgs(self, page_no: int):
- figure_captions, _ = self.__tie_up_category_by_distance(
- page_no, 3, 4
- )
- return [
- {
- "bbox": record["all"],
- "img_body_bbox": record["subject_body"],
- "img_caption_bbox": record.get("object_body", None),
- "score": record["score"],
- }
- for record in figure_captions
- ]
- def get_tables(
- self, page_no: int
- ) -> list: # 3个坐标, caption, table主体,table-note
- with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
- with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
- ret = []
- N, M = len(with_captions), len(with_footnotes)
- assert N == M
- for i in range(N):
- record = {
- "score": with_captions[i]["score"],
- "table_caption_bbox": with_captions[i].get("object_body", None),
- "table_body_bbox": with_captions[i]["subject_body"],
- "table_footnote_bbox": with_footnotes[i].get("object_body", None),
- }
- x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
- y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
- x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
- y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
- record["bbox"] = [x0, y0, x1, y1]
- ret.append(record)
- return ret
- def get_equations(self, page_no: int) -> list: # 有坐标,也有字
- inline_equations = self.__get_blocks_by_type(
- ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
- )
- interline_equations = self.__get_blocks_by_type(
- ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
- )
- interline_equations_blocks = self.__get_blocks_by_type(
- ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
- )
- return inline_equations, interline_equations, interline_equations_blocks
- def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
- return blocks
- def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
- return blocks
- def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
- return blocks
- def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
- text_spans = []
- model_page_info = self.__model_list[page_no]
- layout_dets = model_page_info["layout_dets"]
- for layout_det in layout_dets:
- if layout_det["category_id"] == "15":
- span = {
- "bbox": layout_det["bbox"],
- "content": layout_det["text"],
- }
- text_spans.append(span)
- return text_spans
- def get_all_spans(self, page_no: int) -> list:
- def remove_duplicate_spans(spans):
- new_spans = []
- for span in spans:
- if not any(span == existing_span for existing_span in new_spans):
- new_spans.append(span)
- return new_spans
- all_spans = []
- model_page_info = self.__model_list[page_no]
- layout_dets = model_page_info["layout_dets"]
- allow_category_id_list = [3, 5, 13, 14, 15]
- """当成span拼接的"""
- # 3: 'image', # 图片
- # 5: 'table', # 表格
- # 13: 'inline_equation', # 行内公式
- # 14: 'interline_equation', # 行间公式
- # 15: 'text', # ocr识别文本
- for layout_det in layout_dets:
- category_id = layout_det["category_id"]
- if category_id in allow_category_id_list:
- span = {"bbox": layout_det["bbox"], "score": layout_det["score"]}
- if category_id == 3:
- span["type"] = ContentType.Image
- elif category_id == 5:
- span["type"] = ContentType.Table
- elif category_id == 13:
- span["content"] = layout_det["latex"]
- span["type"] = ContentType.InlineEquation
- elif category_id == 14:
- span["content"] = layout_det["latex"]
- span["type"] = ContentType.InterlineEquation
- elif category_id == 15:
- span["content"] = layout_det["text"]
- span["type"] = ContentType.Text
- all_spans.append(span)
- return remove_duplicate_spans(all_spans)
- def get_page_size(self, page_no: int): # 获取页面宽高
- # 获取当前页的page对象
- page = self.__docs[page_no]
- # 获取当前页的宽高
- page_w = page.rect.width
- page_h = page.rect.height
- return page_w, page_h
- def __get_blocks_by_type(
- self, type: int, page_no: int, extra_col: list[str] = []
- ) -> list:
- blocks = []
- for page_dict in self.__model_list:
- layout_dets = page_dict.get("layout_dets", [])
- page_info = page_dict.get("page_info", {})
- page_number = page_info.get("page_no", -1)
- if page_no != page_number:
- continue
- for item in layout_dets:
- category_id = item.get("category_id", -1)
- bbox = item.get("bbox", None)
- if category_id == type:
- block = {
- "bbox": bbox,
- "score": item.get("score"),
- }
- for col in extra_col:
- block[col] = item.get(col, None)
- blocks.append(block)
- return blocks
- def get_model_list(self, page_no):
- return self.__model_list[page_no]
- if __name__ == "__main__":
- drw = DiskReaderWriter(r"D:/project/20231108code-clean")
- if 0:
- pdf_file_path = r"linshixuqiu\19983-00.pdf"
- model_file_path = r"linshixuqiu\19983-00_new.json"
- pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
- model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
- model_list = json.loads(model_json_txt)
- write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
- img_bucket_path = "imgs"
- img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
- pdf_docs = fitz.open("pdf", pdf_bytes)
- magic_model = MagicModel(model_list, pdf_docs)
- if 1:
- model_list = json.loads(
- drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
- )
- pdf_bytes = drw.read(
- "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
- )
- pdf_docs = fitz.open("pdf", pdf_bytes)
- magic_model = MagicModel(model_list, pdf_docs)
- for i in range(7):
- print(magic_model.get_imgs(i))
|