batch_analyze.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. import html
  2. import cv2
  3. from loguru import logger
  4. from tqdm import tqdm
  5. from collections import defaultdict
  6. import numpy as np
  7. from .model_init import AtomModelSingleton
  8. from .model_list import AtomicModel
  9. from ...utils.config_reader import get_formula_enable, get_table_enable
  10. from ...utils.model_utils import crop_img, get_res_list_from_layout_res, clean_vram
  11. from ...utils.ocr_utils import merge_det_boxes, update_det_boxes, sorted_boxes
  12. from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list, OcrConfidence, get_rotate_crop_image
  13. from ...utils.pdf_image_tools import get_crop_np_img
  14. YOLO_LAYOUT_BASE_BATCH_SIZE = 1
  15. MFD_BASE_BATCH_SIZE = 1
  16. MFR_BASE_BATCH_SIZE = 16
  17. OCR_DET_BASE_BATCH_SIZE = 16
  18. TABLE_ORI_CLS_BATCH_SIZE = 16
  19. TABLE_Wired_Wireless_CLS_BATCH_SIZE = 16
  20. class BatchAnalyze:
  21. def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = True):
  22. self.batch_ratio = batch_ratio
  23. self.formula_enable = get_formula_enable(formula_enable)
  24. self.table_enable = get_table_enable(table_enable)
  25. self.model_manager = model_manager
  26. self.enable_ocr_det_batch = enable_ocr_det_batch
  27. def __call__(self, images_with_extra_info: list) -> list:
  28. if len(images_with_extra_info) == 0:
  29. return []
  30. images_layout_res = []
  31. self.model = self.model_manager.get_model(
  32. lang=None,
  33. formula_enable=self.formula_enable,
  34. table_enable=self.table_enable,
  35. )
  36. atom_model_manager = AtomModelSingleton()
  37. pil_images = [image for image, _, _ in images_with_extra_info]
  38. np_images = [np.asarray(image) for image, _, _ in images_with_extra_info]
  39. # doclayout_yolo
  40. images_layout_res += self.model.layout_model.batch_predict(
  41. pil_images, YOLO_LAYOUT_BASE_BATCH_SIZE
  42. )
  43. if self.formula_enable:
  44. # 公式检测
  45. images_mfd_res = self.model.mfd_model.batch_predict(
  46. np_images, MFD_BASE_BATCH_SIZE
  47. )
  48. # 公式识别
  49. images_formula_list = self.model.mfr_model.batch_predict(
  50. images_mfd_res,
  51. np_images,
  52. batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
  53. )
  54. mfr_count = 0
  55. for image_index in range(len(np_images)):
  56. images_layout_res[image_index] += images_formula_list[image_index]
  57. mfr_count += len(images_formula_list[image_index])
  58. # 清理显存
  59. clean_vram(self.model.device, vram_threshold=8)
  60. ocr_res_list_all_page = []
  61. table_res_list_all_page = []
  62. for index in range(len(np_images)):
  63. _, ocr_enable, _lang = images_with_extra_info[index]
  64. layout_res = images_layout_res[index]
  65. np_img = np_images[index]
  66. ocr_res_list, table_res_list, single_page_mfdetrec_res = (
  67. get_res_list_from_layout_res(layout_res)
  68. )
  69. ocr_res_list_all_page.append({'ocr_res_list':ocr_res_list,
  70. 'lang':_lang,
  71. 'ocr_enable':ocr_enable,
  72. 'np_img':np_img,
  73. 'single_page_mfdetrec_res':single_page_mfdetrec_res,
  74. 'layout_res':layout_res,
  75. })
  76. for table_res in table_res_list:
  77. def get_crop_table_img(scale):
  78. crop_xmin, crop_ymin = int(table_res['poly'][0]), int(table_res['poly'][1])
  79. crop_xmax, crop_ymax = int(table_res['poly'][4]), int(table_res['poly'][5])
  80. bbox = (int(crop_xmin / scale), int(crop_ymin / scale), int(crop_xmax / scale), int(crop_ymax / scale))
  81. return get_crop_np_img(bbox, np_img, scale=scale)
  82. wireless_table_img = get_crop_table_img(scale = 1)
  83. wired_table_img = get_crop_table_img(scale = 10/3)
  84. table_res_list_all_page.append({'table_res':table_res,
  85. 'lang':_lang,
  86. 'table_img':wireless_table_img,
  87. 'wired_table_img':wired_table_img,
  88. })
  89. # 表格识别 table recognition
  90. if self.table_enable:
  91. # 图片旋转批量处理
  92. img_orientation_cls_model = atom_model_manager.get_atom_model(
  93. atom_model_name=AtomicModel.ImgOrientationCls,
  94. )
  95. try:
  96. if self.enable_ocr_det_batch:
  97. img_orientation_cls_model.batch_predict(table_res_list_all_page,
  98. det_batch_size=self.batch_ratio * OCR_DET_BASE_BATCH_SIZE,
  99. batch_size=TABLE_ORI_CLS_BATCH_SIZE)
  100. else:
  101. for table_res in table_res_list_all_page:
  102. rotate_label = img_orientation_cls_model.predict(table_res['table_img'])
  103. img_orientation_cls_model.img_rotate(table_res, rotate_label)
  104. except Exception as e:
  105. logger.warning(
  106. f"Image orientation classification failed: {e}, using original image"
  107. )
  108. # 表格分类
  109. table_cls_model = atom_model_manager.get_atom_model(
  110. atom_model_name=AtomicModel.TableCls,
  111. )
  112. try:
  113. table_cls_model.batch_predict(table_res_list_all_page,
  114. batch_size=TABLE_Wired_Wireless_CLS_BATCH_SIZE)
  115. except Exception as e:
  116. logger.warning(
  117. f"Table classification failed: {e}, using default model"
  118. )
  119. # OCR det 过程,顺序执行
  120. rec_img_lang_group = defaultdict(list)
  121. det_ocr_engine = atom_model_manager.get_atom_model(
  122. atom_model_name=AtomicModel.OCR,
  123. det_db_box_thresh=0.5,
  124. det_db_unclip_ratio=1.6,
  125. enable_merge_det_boxes=False,
  126. )
  127. for index, table_res_dict in enumerate(
  128. tqdm(table_res_list_all_page, desc="Table-ocr det")
  129. ):
  130. bgr_image = cv2.cvtColor(table_res_dict["table_img"], cv2.COLOR_RGB2BGR)
  131. ocr_result = det_ocr_engine.ocr(bgr_image, rec=False)[0]
  132. # 构造需要 OCR 识别的图片字典,包括cropped_img, dt_box, table_id,并按照语言进行分组
  133. for dt_box in ocr_result:
  134. rec_img_lang_group[_lang].append(
  135. {
  136. "cropped_img": get_rotate_crop_image(
  137. bgr_image, np.asarray(dt_box, dtype=np.float32)
  138. ),
  139. "dt_box": np.asarray(dt_box, dtype=np.float32),
  140. "table_id": index,
  141. }
  142. )
  143. # OCR rec,按照语言分批处理
  144. for _lang, rec_img_list in rec_img_lang_group.items():
  145. ocr_engine = atom_model_manager.get_atom_model(
  146. atom_model_name=AtomicModel.OCR,
  147. det_db_box_thresh=0.5,
  148. det_db_unclip_ratio=1.6,
  149. lang=_lang,
  150. enable_merge_det_boxes=False,
  151. )
  152. cropped_img_list = [item["cropped_img"] for item in rec_img_list]
  153. ocr_res_list = ocr_engine.ocr(cropped_img_list, det=False, tqdm_enable=True, tqdm_desc=f"Table-ocr rec {_lang}")[0]
  154. # 按照 table_id 将识别结果进行回填
  155. for img_dict, ocr_res in zip(rec_img_list, ocr_res_list):
  156. if table_res_list_all_page[img_dict["table_id"]].get("ocr_result"):
  157. table_res_list_all_page[img_dict["table_id"]]["ocr_result"].append(
  158. [img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
  159. )
  160. else:
  161. table_res_list_all_page[img_dict["table_id"]]["ocr_result"] = [
  162. [img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
  163. ]
  164. clean_vram(self.model.device, vram_threshold=8)
  165. # 先对所有表格使用无线表格模型,然后对分类为有线的表格使用有线表格模型
  166. wireless_table_model = atom_model_manager.get_atom_model(
  167. atom_model_name=AtomicModel.WirelessTable,
  168. )
  169. wireless_table_model.batch_predict(table_res_list_all_page)
  170. # 单独拿出有线表格进行预测
  171. wired_table_res_list = []
  172. for table_res_dict in table_res_list_all_page:
  173. # logger.debug(f"Table classification result: {table_res_dict["table_res"]["cls_label"]} with confidence {table_res_dict["table_res"]["cls_score"]}")
  174. if (
  175. (table_res_dict["table_res"]["cls_label"] == AtomicModel.WirelessTable and table_res_dict["table_res"]["cls_score"] < 0.9)
  176. or table_res_dict["table_res"]["cls_label"] == AtomicModel.WiredTable
  177. ):
  178. wired_table_res_list.append(table_res_dict)
  179. del table_res_dict["table_res"]["cls_label"]
  180. del table_res_dict["table_res"]["cls_score"]
  181. if wired_table_res_list:
  182. for table_res_dict in tqdm(
  183. wired_table_res_list, desc="Table-wired Predict"
  184. ):
  185. if not table_res_dict.get("ocr_result", None):
  186. continue
  187. wired_table_model = atom_model_manager.get_atom_model(
  188. atom_model_name=AtomicModel.WiredTable,
  189. lang=table_res_dict["lang"],
  190. )
  191. table_res_dict["table_res"]["html"] = wired_table_model.predict(
  192. table_res_dict["wired_table_img"],
  193. table_res_dict["ocr_result"],
  194. table_res_dict["table_res"].get("html", None)
  195. )
  196. # 表格格式清理
  197. for table_res_dict in table_res_list_all_page:
  198. html_code = table_res_dict["table_res"].get("html", "") or ""
  199. # 检查html_code是否包含'<table>'和'</table>'
  200. if "<table>" in html_code and "</table>" in html_code:
  201. # 选用<table>到</table>的内容,放入table_res_dict['table_res']['html']
  202. start_index = html_code.find("<table>")
  203. end_index = html_code.rfind("</table>") + len("</table>")
  204. table_res_dict["table_res"]["html"] = html_code[start_index:end_index]
  205. # OCR det
  206. if self.enable_ocr_det_batch:
  207. # 批处理模式 - 按语言和分辨率分组
  208. # 收集所有需要OCR检测的裁剪图像
  209. all_cropped_images_info = []
  210. for ocr_res_list_dict in ocr_res_list_all_page:
  211. _lang = ocr_res_list_dict['lang']
  212. for res in ocr_res_list_dict['ocr_res_list']:
  213. new_image, useful_list = crop_img(
  214. res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
  215. )
  216. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  217. ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
  218. )
  219. # BGR转换
  220. bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
  221. all_cropped_images_info.append((
  222. bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang
  223. ))
  224. # 按语言分组
  225. lang_groups = defaultdict(list)
  226. for crop_info in all_cropped_images_info:
  227. lang = crop_info[5]
  228. lang_groups[lang].append(crop_info)
  229. # 对每种语言按分辨率分组并批处理
  230. for lang, lang_crop_list in lang_groups.items():
  231. if not lang_crop_list:
  232. continue
  233. # logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images")
  234. # 获取OCR模型
  235. ocr_model = atom_model_manager.get_atom_model(
  236. atom_model_name=AtomicModel.OCR,
  237. det_db_box_thresh=0.3,
  238. lang=lang
  239. )
  240. # 按分辨率分组并同时完成padding
  241. # RESOLUTION_GROUP_STRIDE = 32
  242. RESOLUTION_GROUP_STRIDE = 64
  243. resolution_groups = defaultdict(list)
  244. for crop_info in lang_crop_list:
  245. cropped_img = crop_info[0]
  246. h, w = cropped_img.shape[:2]
  247. # 直接计算目标尺寸并用作分组键
  248. target_h = ((h + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  249. target_w = ((w + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  250. group_key = (target_h, target_w)
  251. resolution_groups[group_key].append(crop_info)
  252. # 对每个分辨率组进行批处理
  253. for (target_h, target_w), group_crops in tqdm(resolution_groups.items(), desc=f"OCR-det {lang}"):
  254. # 对所有图像进行padding到统一尺寸
  255. batch_images = []
  256. for crop_info in group_crops:
  257. img = crop_info[0]
  258. h, w = img.shape[:2]
  259. # 创建目标尺寸的白色背景
  260. padded_img = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
  261. padded_img[:h, :w] = img
  262. batch_images.append(padded_img)
  263. # 批处理检测
  264. det_batch_size = min(len(batch_images), self.batch_ratio * OCR_DET_BASE_BATCH_SIZE)
  265. batch_results = ocr_model.text_detector.batch_predict(batch_images, det_batch_size)
  266. # 处理批处理结果
  267. for crop_info, (dt_boxes, _) in zip(group_crops, batch_results):
  268. bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang = crop_info
  269. if dt_boxes is not None and len(dt_boxes) > 0:
  270. # 处理检测框
  271. dt_boxes_sorted = sorted_boxes(dt_boxes)
  272. dt_boxes_merged = merge_det_boxes(dt_boxes_sorted) if dt_boxes_sorted else []
  273. # 根据公式位置更新检测框
  274. dt_boxes_final = (update_det_boxes(dt_boxes_merged, adjusted_mfdetrec_res)
  275. if dt_boxes_merged and adjusted_mfdetrec_res
  276. else dt_boxes_merged)
  277. if dt_boxes_final:
  278. ocr_res = [box.tolist() if hasattr(box, 'tolist') else box for box in dt_boxes_final]
  279. ocr_result_list = get_ocr_result_list(
  280. ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], bgr_image, _lang
  281. )
  282. ocr_res_list_dict['layout_res'].extend(ocr_result_list)
  283. else:
  284. # 原始单张处理模式
  285. for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="OCR-det Predict"):
  286. # Process each area that requires OCR processing
  287. _lang = ocr_res_list_dict['lang']
  288. # Get OCR results for this language's images
  289. ocr_model = atom_model_manager.get_atom_model(
  290. atom_model_name=AtomicModel.OCR,
  291. ocr_show_log=False,
  292. det_db_box_thresh=0.3,
  293. lang=_lang
  294. )
  295. for res in ocr_res_list_dict['ocr_res_list']:
  296. new_image, useful_list = crop_img(
  297. res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
  298. )
  299. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  300. ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
  301. )
  302. # OCR-det
  303. bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
  304. ocr_res = ocr_model.ocr(
  305. bgr_image, mfd_res=adjusted_mfdetrec_res, rec=False
  306. )[0]
  307. # Integration results
  308. if ocr_res:
  309. ocr_result_list = get_ocr_result_list(
  310. ocr_res, useful_list, ocr_res_list_dict['ocr_enable'],bgr_image, _lang
  311. )
  312. ocr_res_list_dict['layout_res'].extend(ocr_result_list)
  313. # OCR rec
  314. # Create dictionaries to store items by language
  315. need_ocr_lists_by_lang = {} # Dict of lists for each language
  316. img_crop_lists_by_lang = {} # Dict of lists for each language
  317. for layout_res in images_layout_res:
  318. for layout_res_item in layout_res:
  319. if layout_res_item['category_id'] in [15]:
  320. if 'np_img' in layout_res_item and 'lang' in layout_res_item:
  321. lang = layout_res_item['lang']
  322. # Initialize lists for this language if not exist
  323. if lang not in need_ocr_lists_by_lang:
  324. need_ocr_lists_by_lang[lang] = []
  325. img_crop_lists_by_lang[lang] = []
  326. # Add to the appropriate language-specific lists
  327. need_ocr_lists_by_lang[lang].append(layout_res_item)
  328. img_crop_lists_by_lang[lang].append(layout_res_item['np_img'])
  329. # Remove the fields after adding to lists
  330. layout_res_item.pop('np_img')
  331. layout_res_item.pop('lang')
  332. if len(img_crop_lists_by_lang) > 0:
  333. # Process OCR by language
  334. total_processed = 0
  335. # Process each language separately
  336. for lang, img_crop_list in img_crop_lists_by_lang.items():
  337. if len(img_crop_list) > 0:
  338. # Get OCR results for this language's images
  339. ocr_model = atom_model_manager.get_atom_model(
  340. atom_model_name=AtomicModel.OCR,
  341. det_db_box_thresh=0.3,
  342. lang=lang
  343. )
  344. ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
  345. # Verify we have matching counts
  346. assert len(ocr_res_list) == len(
  347. need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}'
  348. # Process OCR results for this language
  349. for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]):
  350. ocr_text, ocr_score = ocr_res_list[index]
  351. layout_res_item['text'] = ocr_text
  352. layout_res_item['score'] = float(f"{ocr_score:.3f}")
  353. if ocr_score < OcrConfidence.min_confidence:
  354. layout_res_item['category_id'] = 16
  355. else:
  356. layout_res_bbox = [layout_res_item['poly'][0], layout_res_item['poly'][1],
  357. layout_res_item['poly'][4], layout_res_item['poly'][5]]
  358. layout_res_width = layout_res_bbox[2] - layout_res_bbox[0]
  359. layout_res_height = layout_res_bbox[3] - layout_res_bbox[1]
  360. if ocr_text in ['(204号', '(20', '(2', '(2号', '(20号', '号', '(204'] and ocr_score < 0.8 and layout_res_width < layout_res_height:
  361. layout_res_item['category_id'] = 16
  362. total_processed += len(img_crop_list)
  363. return images_layout_res