magic_model.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import _is_in, bbox_relative_pos, bbox_distance
  12. class MagicModel:
  13. """
  14. 每个函数没有得到元素的时候返回空list
  15. """
  16. def __fix_axis(self):
  17. need_remove_list = []
  18. for model_page_info in self.__model_list:
  19. page_no = model_page_info["page_info"]["page_no"]
  20. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  21. model_page_info, self.__docs[page_no]
  22. )
  23. layout_dets = model_page_info["layout_dets"]
  24. for layout_det in layout_dets:
  25. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  26. bbox = [
  27. int(x0 / horizontal_scale_ratio),
  28. int(y0 / vertical_scale_ratio),
  29. int(x1 / horizontal_scale_ratio),
  30. int(y1 / vertical_scale_ratio),
  31. ]
  32. layout_det["bbox"] = bbox
  33. # 删除高度或者宽度为0的spans
  34. if bbox[2] - bbox[0] == 0 or bbox[3] - bbox[1] == 0:
  35. need_remove_list.append(layout_det)
  36. for need_remove in need_remove_list:
  37. layout_dets.remove(need_remove)
  38. def __init__(self, model_list: list, docs: fitz.Document):
  39. self.__model_list = model_list
  40. self.__docs = docs
  41. self.__fix_axis()
  42. def __reduct_overlap(self, bboxes):
  43. N = len(bboxes)
  44. keep = [True] * N
  45. for i in range(N):
  46. for j in range(N):
  47. if i == j:
  48. continue
  49. if _is_in(bboxes[i], bboxes[j]):
  50. keep[i] = False
  51. return [bboxes[i] for i in range(N) if keep[i]]
  52. def __tie_up_category_by_distance(
  53. self, page_no, subject_category_id, object_category_id
  54. ):
  55. """
  56. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  57. """
  58. ret = []
  59. MAX_DIS_OF_POINT = 10**9 + 7
  60. subjects = self.__reduct_overlap(
  61. list(
  62. map(
  63. lambda x: x["bbox"],
  64. filter(
  65. lambda x: x["category_id"] == subject_category_id,
  66. self.__model_list[page_no]["layout_dets"],
  67. ),
  68. )
  69. )
  70. )
  71. objects = self.__reduct_overlap(
  72. list(
  73. map(
  74. lambda x: x["bbox"],
  75. filter(
  76. lambda x: x["category_id"] == object_category_id,
  77. self.__model_list[page_no]["layout_dets"],
  78. ),
  79. )
  80. )
  81. )
  82. subject_object_relation_map = {}
  83. subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2) # get the distance !
  84. all_bboxes = []
  85. for v in subjects:
  86. all_bboxes.append({"category_id": subject_category_id, "bbox": v})
  87. for v in objects:
  88. all_bboxes.append({"category_id": object_category_id, "bbox": v})
  89. N = len(all_bboxes)
  90. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  91. for i in range(N):
  92. for j in range(i):
  93. if (
  94. all_bboxes[i]["category_id"] == subject_category_id
  95. and all_bboxes[j]["category_id"] == subject_category_id
  96. ):
  97. continue
  98. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  99. dis[j][i] = dis[i][j]
  100. used = set()
  101. for i in range(N):
  102. # 求第 i 个 subject 所关联的 object
  103. if all_bboxes[i]["category_id"] != subject_category_id:
  104. continue
  105. seen = set()
  106. candidates = []
  107. arr = []
  108. for j in range(N):
  109. pos_flag_count = sum(
  110. list(
  111. map(
  112. lambda x: 1 if x else 0,
  113. bbox_relative_pos(
  114. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  115. ),
  116. )
  117. )
  118. )
  119. if pos_flag_count > 1:
  120. continue
  121. if (
  122. all_bboxes[j]["category_id"] != object_category_id
  123. or j in used
  124. or dis[i][j] == MAX_DIS_OF_POINT
  125. ):
  126. continue
  127. arr.append((dis[i][j], j))
  128. arr.sort(key=lambda x: x[0])
  129. if len(arr) > 0:
  130. candidates.append(arr[0][1])
  131. seen.add(arr[0][1])
  132. # 已经获取初始种子
  133. for j in set(candidates):
  134. tmp = []
  135. for k in range(i + 1, N):
  136. pos_flag_count = sum(
  137. list(
  138. map(
  139. lambda x: 1 if x else 0,
  140. bbox_relative_pos(
  141. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  142. ),
  143. )
  144. )
  145. )
  146. if pos_flag_count > 1:
  147. continue
  148. if (
  149. all_bboxes[k]["category_id"] != object_category_id
  150. or k in used
  151. or k in seen
  152. or dis[j][k] == MAX_DIS_OF_POINT
  153. ):
  154. continue
  155. is_nearest = True
  156. for l in range(i + 1, N):
  157. if l in (j, k) or l in used or l in seen:
  158. continue
  159. if not float_gt(dis[l][k], dis[j][k]):
  160. is_nearest = False
  161. break
  162. if is_nearest:
  163. tmp.append(k)
  164. seen.add(k)
  165. candidates = tmp
  166. if len(candidates) == 0:
  167. break
  168. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  169. # 先扩一下 bbox,
  170. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  171. all_bboxes[i]["bbox"][0]
  172. ]
  173. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  174. all_bboxes[i]["bbox"][1]
  175. ]
  176. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  177. all_bboxes[i]["bbox"][2]
  178. ]
  179. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  180. all_bboxes[i]["bbox"][3]
  181. ]
  182. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  183. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  184. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  185. caption_poses = [
  186. [ox0, oy0, ix0, oy1],
  187. [ox0, oy0, ox1, iy0],
  188. [ox0, iy1, ox1, oy1],
  189. [ix1, oy0, ox1, oy1],
  190. ]
  191. caption_areas = []
  192. for bbox in caption_poses:
  193. embed_arr = []
  194. for idx in seen:
  195. if _is_in(all_bboxes[idx]["bbox"], bbox):
  196. embed_arr.append(idx)
  197. if len(embed_arr) > 0:
  198. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  199. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  200. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  201. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  202. caption_areas.append(
  203. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  204. )
  205. else:
  206. caption_areas.append(0)
  207. subject_object_relation_map[i] = []
  208. if max(caption_areas) > 0:
  209. max_area_idx = caption_areas.index(max(caption_areas))
  210. caption_bbox = caption_poses[max_area_idx]
  211. for j in seen:
  212. if _is_in(all_bboxes[j]["bbox"], caption_bbox):
  213. used.add(j)
  214. subject_object_relation_map[i].append(j)
  215. for i in sorted(subject_object_relation_map.keys()):
  216. result = {
  217. "subject_body": all_bboxes[i]["bbox"],
  218. "all": all_bboxes[i]["bbox"],
  219. }
  220. if len(subject_object_relation_map[i]) > 0:
  221. x0 = min(
  222. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  223. )
  224. y0 = min(
  225. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  226. )
  227. x1 = max(
  228. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  229. )
  230. y1 = max(
  231. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  232. )
  233. result["object_body"] = [x0, y0, x1, y1]
  234. result["all"] = [
  235. min(x0, all_bboxes[i]["bbox"][0]),
  236. min(y0, all_bboxes[i]["bbox"][1]),
  237. max(x1, all_bboxes[i]["bbox"][2]),
  238. max(y1, all_bboxes[i]["bbox"][3]),
  239. ]
  240. ret.append(result)
  241. total_subject_object_dis = 0
  242. # 计算已经配对的 distance 距离
  243. for i in subject_object_relation_map.keys():
  244. for j in subject_object_relation_map[i]:
  245. total_subject_object_dis += bbox_distance(
  246. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  247. )
  248. # 计算未匹配的 subject 和 object 的距离(非精确版)
  249. with_caption_subject = set(
  250. [
  251. key
  252. for key in subject_object_relation_map.keys()
  253. if len(subject_object_relation_map[i]) > 0
  254. ]
  255. )
  256. for i in range(N):
  257. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  258. continue
  259. candidates = []
  260. for j in range(N):
  261. if (
  262. all_bboxes[j]["category_id"] != subject_category_id
  263. or j in with_caption_subject
  264. ):
  265. continue
  266. candidates.append((dis[i][j], j))
  267. if len(candidates) > 0:
  268. candidates.sort(key=lambda x: x[0])
  269. total_subject_object_dis += candidates[0][1]
  270. with_caption_subject.add(j)
  271. return ret, total_subject_object_dis
  272. def get_imgs(self, page_no: int): # @许瑞
  273. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  274. return [
  275. {
  276. "bbox": record["all"],
  277. "img_body_bbox": record["subject_body"],
  278. "img_caption_bbox": record.get("object_body", None),
  279. }
  280. for record in records
  281. ]
  282. def get_tables(
  283. self, page_no: int
  284. ) -> list: # 3个坐标, caption, table主体,table-note
  285. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  286. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  287. ret = []
  288. N, M = len(with_captions), len(with_footnotes)
  289. assert N == M
  290. for i in range(N):
  291. record = {
  292. "table_caption_bbox": with_captions[i].get("object_body", None),
  293. "table_body_bbox": with_captions[i]["subject_body"],
  294. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  295. }
  296. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  297. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  298. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  299. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  300. record["bbox"] = [x0, y0, x1, y1]
  301. ret.append(record)
  302. return ret
  303. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  304. inline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"])
  305. interline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"])
  306. interline_equations_blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no)
  307. return inline_equations, interline_equations, interline_equations_blocks
  308. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  309. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  310. return blocks
  311. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  312. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  313. return blocks
  314. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  315. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  316. return blocks
  317. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  318. text_spans = []
  319. model_page_info = self.__model_list[page_no]
  320. layout_dets = model_page_info["layout_dets"]
  321. for layout_det in layout_dets:
  322. if layout_det["category_id"] == "15":
  323. span = {
  324. "bbox": layout_det['bbox'],
  325. "content": layout_det["text"],
  326. }
  327. text_spans.append(span)
  328. return text_spans
  329. def get_all_spans(self, page_no: int) -> list:
  330. all_spans = []
  331. model_page_info = self.__model_list[page_no]
  332. layout_dets = model_page_info["layout_dets"]
  333. allow_category_id_list = [3, 5, 13, 14, 15]
  334. """当成span拼接的"""
  335. # 3: 'image', # 图片
  336. # 4: 'table', # 表格
  337. # 13: 'inline_equation', # 行内公式
  338. # 14: 'interline_equation', # 行间公式
  339. # 15: 'text', # ocr识别文本
  340. for layout_det in layout_dets:
  341. category_id = layout_det["category_id"]
  342. if category_id in allow_category_id_list:
  343. span = {
  344. "bbox": layout_det['bbox']
  345. }
  346. if category_id == 3:
  347. span["type"] = ContentType.Image
  348. elif category_id == 5:
  349. span["type"] = ContentType.Table
  350. elif category_id == 13:
  351. span["content"] = layout_det["latex"]
  352. span["type"] = ContentType.InlineEquation
  353. elif category_id == 14:
  354. span["content"] = layout_det["latex"]
  355. span["type"] = ContentType.InterlineEquation
  356. elif category_id == 15:
  357. span["content"] = layout_det["text"]
  358. span["type"] = ContentType.Text
  359. all_spans.append(span)
  360. return all_spans
  361. def get_page_size(self, page_no: int): # 获取页面宽高
  362. # 获取当前页的page对象
  363. page = self.__docs[page_no]
  364. # 获取当前页的宽高
  365. page_w = page.rect.width
  366. page_h = page.rect.height
  367. return page_w, page_h
  368. def __get_blocks_by_type(self, types: list, page_no: int, extra_col: list[str] = []) -> list:
  369. blocks = []
  370. for page_dict in self.__model_list:
  371. layout_dets = page_dict.get("layout_dets", [])
  372. page_info = page_dict.get("page_info", {})
  373. page_number = page_info.get("page_no", -1)
  374. if page_no != page_number:
  375. continue
  376. for item in layout_dets:
  377. category_id = item.get("category_id", -1)
  378. bbox = item.get("bbox", None)
  379. if category_id in types:
  380. block = {
  381. "bbox": bbox
  382. }
  383. for col in extra_col:
  384. block[col] = item.get(col, None)
  385. blocks.append(block)
  386. return blocks
  387. if __name__ == "__main__":
  388. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  389. if 0:
  390. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  391. model_file_path = r"linshixuqiu\19983-00_new.json"
  392. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  393. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  394. model_list = json.loads(model_json_txt)
  395. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  396. img_bucket_path = "imgs"
  397. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  398. pdf_docs = fitz.open("pdf", pdf_bytes)
  399. magic_model = MagicModel(model_list, pdf_docs)
  400. if 1:
  401. model_list = json.loads(
  402. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  403. )
  404. pdf_bytes = drw.read(
  405. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  406. )
  407. pdf_docs = fitz.open("pdf", pdf_bytes)
  408. magic_model = MagicModel(model_list, pdf_docs)
  409. for i in range(7):
  410. print(magic_model.get_imgs(i))