model_json_to_middle_json.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import os
  3. import time
  4. from loguru import logger
  5. from tqdm import tqdm
  6. from mineru.utils.config_reader import get_device, get_llm_aided_config, get_formula_enable
  7. from mineru.backend.pipeline.model_init import AtomModelSingleton
  8. from mineru.backend.pipeline.para_split import para_split
  9. from mineru.utils.block_pre_proc import prepare_block_bboxes, process_groups
  10. from mineru.utils.block_sort import sort_blocks_by_bbox
  11. from mineru.utils.boxbase import calculate_overlap_area_in_bbox1_area_ratio
  12. from mineru.utils.cut_image import cut_image_and_table
  13. from mineru.utils.enum_class import ContentType
  14. from mineru.utils.llm_aided import llm_aided_title
  15. from mineru.utils.model_utils import clean_memory
  16. from mineru.backend.pipeline.pipeline_magic_model import MagicModel
  17. from mineru.utils.ocr_utils import OcrConfidence
  18. from mineru.utils.span_block_fix import fill_spans_in_blocks, fix_discarded_block, fix_block_spans
  19. from mineru.utils.span_pre_proc import remove_outside_spans, remove_overlaps_low_confidence_spans, \
  20. remove_overlaps_min_spans, txt_spans_extract
  21. from mineru.version import __version__
  22. from mineru.utils.hash_utils import bytes_md5
  23. def page_model_info_to_page_info(page_model_info, image_dict, page, image_writer, page_index, ocr_enable=False, formula_enabled=True):
  24. scale = image_dict["scale"]
  25. page_pil_img = image_dict["img_pil"]
  26. # page_img_md5 = str_md5(image_dict["img_base64"])
  27. page_img_md5 = bytes_md5(page_pil_img.tobytes())
  28. page_w, page_h = map(int, page.get_size())
  29. magic_model = MagicModel(page_model_info, scale)
  30. """从magic_model对象中获取后面会用到的区块信息"""
  31. discarded_blocks = magic_model.get_discarded()
  32. text_blocks = magic_model.get_text_blocks()
  33. title_blocks = magic_model.get_title_blocks()
  34. inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations()
  35. img_groups = magic_model.get_imgs()
  36. table_groups = magic_model.get_tables()
  37. """对image和table的区块分组"""
  38. img_body_blocks, img_caption_blocks, img_footnote_blocks, maybe_text_image_blocks = process_groups(
  39. img_groups, 'image_body', 'image_caption_list', 'image_footnote_list'
  40. )
  41. table_body_blocks, table_caption_blocks, table_footnote_blocks, _ = process_groups(
  42. table_groups, 'table_body', 'table_caption_list', 'table_footnote_list'
  43. )
  44. """获取所有的spans信息"""
  45. spans = magic_model.get_all_spans()
  46. """某些图可能是文本块,通过简单的规则判断一下"""
  47. if len(maybe_text_image_blocks) > 0:
  48. for block in maybe_text_image_blocks:
  49. should_add_to_text_blocks = False
  50. if ocr_enable:
  51. # 找到与当前block重叠的text spans
  52. span_in_block_list = [
  53. span for span in spans
  54. if span['type'] == 'text' and
  55. calculate_overlap_area_in_bbox1_area_ratio(span['bbox'], block['bbox']) > 0.7
  56. ]
  57. if len(span_in_block_list) > 0:
  58. # 计算spans总面积
  59. spans_area = sum(
  60. (span['bbox'][2] - span['bbox'][0]) * (span['bbox'][3] - span['bbox'][1])
  61. for span in span_in_block_list
  62. )
  63. # 计算block面积
  64. block_area = (block['bbox'][2] - block['bbox'][0]) * (block['bbox'][3] - block['bbox'][1])
  65. # 判断是否符合文本图条件
  66. if block_area > 0 and spans_area / block_area > 0.25:
  67. should_add_to_text_blocks = True
  68. # 根据条件决定添加到哪个列表
  69. if should_add_to_text_blocks:
  70. block.pop('group_id', None) # 移除group_id
  71. text_blocks.append(block)
  72. else:
  73. img_body_blocks.append(block)
  74. """将所有区块的bbox整理到一起"""
  75. if formula_enabled:
  76. interline_equation_blocks = []
  77. if len(interline_equation_blocks) > 0:
  78. for block in interline_equation_blocks:
  79. spans.append({
  80. "type": ContentType.INTERLINE_EQUATION,
  81. 'score': block['score'],
  82. "bbox": block['bbox'],
  83. "content": "",
  84. })
  85. all_bboxes, all_discarded_blocks, footnote_blocks = prepare_block_bboxes(
  86. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  87. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  88. discarded_blocks,
  89. text_blocks,
  90. title_blocks,
  91. interline_equation_blocks,
  92. page_w,
  93. page_h,
  94. )
  95. else:
  96. all_bboxes, all_discarded_blocks, footnote_blocks = prepare_block_bboxes(
  97. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  98. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  99. discarded_blocks,
  100. text_blocks,
  101. title_blocks,
  102. interline_equations,
  103. page_w,
  104. page_h,
  105. )
  106. """在删除重复span之前,应该通过image_body和table_body的block过滤一下image和table的span"""
  107. """顺便删除大水印并保留abandon的span"""
  108. spans = remove_outside_spans(spans, all_bboxes, all_discarded_blocks)
  109. """删除重叠spans中置信度较低的那些"""
  110. spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
  111. """删除重叠spans中较小的那些"""
  112. spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
  113. """根据parse_mode,构造spans,主要是文本类的字符填充"""
  114. if ocr_enable:
  115. pass
  116. else:
  117. """使用新版本的混合ocr方案."""
  118. spans = txt_spans_extract(page, spans, page_pil_img, scale, all_bboxes, all_discarded_blocks)
  119. """先处理不需要排版的discarded_blocks"""
  120. discarded_block_with_spans, spans = fill_spans_in_blocks(
  121. all_discarded_blocks, spans, 0.4
  122. )
  123. fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
  124. """如果当前页面没有有效的bbox则跳过"""
  125. if len(all_bboxes) == 0:
  126. return None
  127. """对image/table/interline_equation截图"""
  128. for span in spans:
  129. if span['type'] in [ContentType.IMAGE, ContentType.TABLE, ContentType.INTERLINE_EQUATION]:
  130. span = cut_image_and_table(
  131. span, page_pil_img, page_img_md5, page_index, image_writer, scale=scale
  132. )
  133. """span填充进block"""
  134. block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.5)
  135. """对block进行fix操作"""
  136. fix_blocks = fix_block_spans(block_with_spans)
  137. """对block进行排序"""
  138. sorted_blocks = sort_blocks_by_bbox(fix_blocks, page_w, page_h, footnote_blocks)
  139. """构造page_info"""
  140. page_info = make_page_info_dict(sorted_blocks, page_index, page_w, page_h, fix_discarded_blocks)
  141. return page_info
  142. def result_to_middle_json(model_list, images_list, pdf_doc, image_writer, lang=None, ocr_enable=False, formula_enabled=True):
  143. middle_json = {"pdf_info": [], "_backend":"pipeline", "_version_name": __version__}
  144. formula_enabled = get_formula_enable(formula_enabled)
  145. for page_index, page_model_info in tqdm(enumerate(model_list), total=len(model_list), desc="Processing pages"):
  146. page = pdf_doc[page_index]
  147. image_dict = images_list[page_index]
  148. page_info = page_model_info_to_page_info(
  149. page_model_info, image_dict, page, image_writer, page_index, ocr_enable=ocr_enable, formula_enabled=formula_enabled
  150. )
  151. if page_info is None:
  152. page_w, page_h = map(int, page.get_size())
  153. page_info = make_page_info_dict([], page_index, page_w, page_h, [])
  154. middle_json["pdf_info"].append(page_info)
  155. """后置ocr处理"""
  156. need_ocr_list = []
  157. img_crop_list = []
  158. text_block_list = []
  159. for page_info in middle_json["pdf_info"]:
  160. for block in page_info['preproc_blocks']:
  161. if block['type'] in ['table', 'image']:
  162. for sub_block in block['blocks']:
  163. if sub_block['type'] in ['image_caption', 'image_footnote', 'table_caption', 'table_footnote']:
  164. text_block_list.append(sub_block)
  165. elif block['type'] in ['text', 'title']:
  166. text_block_list.append(block)
  167. for block in page_info['discarded_blocks']:
  168. text_block_list.append(block)
  169. for block in text_block_list:
  170. for line in block['lines']:
  171. for span in line['spans']:
  172. if 'np_img' in span:
  173. need_ocr_list.append(span)
  174. img_crop_list.append(span['np_img'])
  175. span.pop('np_img')
  176. if len(img_crop_list) > 0:
  177. atom_model_manager = AtomModelSingleton()
  178. ocr_model = atom_model_manager.get_atom_model(
  179. atom_model_name='ocr',
  180. det_db_box_thresh=0.3,
  181. lang=lang
  182. )
  183. ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
  184. assert len(ocr_res_list) == len(
  185. need_ocr_list), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_list)}'
  186. for index, span in enumerate(need_ocr_list):
  187. ocr_text, ocr_score = ocr_res_list[index]
  188. if ocr_score > OcrConfidence.min_confidence:
  189. span['content'] = ocr_text
  190. span['score'] = float(f"{ocr_score:.3f}")
  191. else:
  192. span['content'] = ''
  193. span['score'] = 0.0
  194. """分段"""
  195. para_split(middle_json["pdf_info"])
  196. """llm优化"""
  197. llm_aided_config = get_llm_aided_config()
  198. if llm_aided_config is not None:
  199. """标题优化"""
  200. title_aided_config = llm_aided_config.get('title_aided', None)
  201. if title_aided_config is not None:
  202. if title_aided_config.get('enable', False):
  203. llm_aided_title_start_time = time.time()
  204. llm_aided_title(middle_json["pdf_info"], title_aided_config)
  205. logger.info(f'llm aided title time: {round(time.time() - llm_aided_title_start_time, 2)}')
  206. """清理内存"""
  207. pdf_doc.close()
  208. if os.getenv('MINERU_DONOT_CLEAN_MEM') is None and len(model_list) >= 10:
  209. clean_memory(get_device())
  210. return middle_json
  211. def make_page_info_dict(blocks, page_id, page_w, page_h, discarded_blocks):
  212. return_dict = {
  213. 'preproc_blocks': blocks,
  214. 'page_idx': page_id,
  215. 'page_size': [page_w, page_h],
  216. 'discarded_blocks': discarded_blocks,
  217. }
  218. return return_dict