| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 |
- # Copyright (c) Opendatalab. All rights reserved.
- import collections
- import re
- import statistics
- import cv2
- import numpy as np
- from loguru import logger
- from mineru.utils.boxbase import calculate_overlap_area_in_bbox1_area_ratio, calculate_iou, \
- get_minbox_if_overlap_by_ratio
- from mineru.utils.enum_class import BlockType, ContentType
- from mineru.utils.pdf_image_tools import get_crop_img
- from mineru.utils.pdf_text_tool import get_page
- def remove_outside_spans(spans, all_bboxes, all_discarded_blocks):
- def get_block_bboxes(blocks, block_type_list):
- return [block[0:4] for block in blocks if block[7] in block_type_list]
- image_bboxes = get_block_bboxes(all_bboxes, [BlockType.IMAGE_BODY])
- table_bboxes = get_block_bboxes(all_bboxes, [BlockType.TABLE_BODY])
- other_block_type = []
- for block_type in BlockType.__dict__.values():
- if not isinstance(block_type, str):
- continue
- if block_type not in [BlockType.IMAGE_BODY, BlockType.TABLE_BODY]:
- other_block_type.append(block_type)
- other_block_bboxes = get_block_bboxes(all_bboxes, other_block_type)
- discarded_block_bboxes = get_block_bboxes(all_discarded_blocks, [BlockType.DISCARDED])
- new_spans = []
- for span in spans:
- span_bbox = span['bbox']
- span_type = span['type']
- if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.4 for block_bbox in
- discarded_block_bboxes):
- new_spans.append(span)
- continue
- if span_type == ContentType.IMAGE:
- if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
- image_bboxes):
- new_spans.append(span)
- elif span_type == ContentType.TABLE:
- if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
- table_bboxes):
- new_spans.append(span)
- else:
- if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
- other_block_bboxes):
- new_spans.append(span)
- return new_spans
- def remove_overlaps_low_confidence_spans(spans):
- dropped_spans = []
- # 删除重叠spans中置信度低的的那些
- for span1 in spans:
- for span2 in spans:
- if span1 != span2:
- # span1 或 span2 任何一个都不应该在 dropped_spans 中
- if span1 in dropped_spans or span2 in dropped_spans:
- continue
- else:
- if calculate_iou(span1['bbox'], span2['bbox']) > 0.9:
- if span1['score'] < span2['score']:
- span_need_remove = span1
- else:
- span_need_remove = span2
- if (
- span_need_remove is not None
- and span_need_remove not in dropped_spans
- ):
- dropped_spans.append(span_need_remove)
- if len(dropped_spans) > 0:
- for span_need_remove in dropped_spans:
- spans.remove(span_need_remove)
- return spans, dropped_spans
- def remove_overlaps_min_spans(spans):
- dropped_spans = []
- # 删除重叠spans中较小的那些
- for span1 in spans:
- for span2 in spans:
- if span1 != span2:
- # span1 或 span2 任何一个都不应该在 dropped_spans 中
- if span1 in dropped_spans or span2 in dropped_spans:
- continue
- else:
- overlap_box = get_minbox_if_overlap_by_ratio(span1['bbox'], span2['bbox'], 0.65)
- if overlap_box is not None:
- span_need_remove = next((span for span in spans if span['bbox'] == overlap_box), None)
- if span_need_remove is not None and span_need_remove not in dropped_spans:
- dropped_spans.append(span_need_remove)
- if len(dropped_spans) > 0:
- for span_need_remove in dropped_spans:
- spans.remove(span_need_remove)
- return spans, dropped_spans
- def __replace_ligatures(text: str):
- ligatures = {
- 'fi': 'fi', 'fl': 'fl', 'ff': 'ff', 'ffi': 'ffi', 'ffl': 'ffl', 'ſt': 'ft', 'st': 'st'
- }
- return re.sub('|'.join(map(re.escape, ligatures.keys())), lambda m: ligatures[m.group()], text)
- def __replace_unicode(text: str):
- ligatures = {
- '\r\n': '', '\u0002': '-',
- }
- return re.sub('|'.join(map(re.escape, ligatures.keys())), lambda m: ligatures[m.group()], text)
- """pdf_text dict方案 char级别"""
- def txt_spans_extract(pdf_page, spans, pil_img, scale, all_bboxes, all_discarded_blocks):
- page_dict = get_page(pdf_page)
- page_all_chars = []
- page_all_lines = []
- for block in page_dict['blocks']:
- for line in block['lines']:
- if 0 < abs(line['rotation']) < 90:
- # 旋转角度在0-90度之间的行,直接跳过
- continue
- page_all_lines.append(line)
- for span in line['spans']:
- for char in span['chars']:
- page_all_chars.append(char)
- # 计算所有sapn的高度的中位数
- span_height_list = []
- for span in spans:
- if span['type'] in [ContentType.TEXT]:
- span_height = span['bbox'][3] - span['bbox'][1]
- span['height'] = span_height
- span['width'] = span['bbox'][2] - span['bbox'][0]
- span_height_list.append(span_height)
- if len(span_height_list) == 0:
- return spans
- else:
- median_span_height = statistics.median(span_height_list)
- useful_spans = []
- unuseful_spans = []
- # 纵向span的两个特征:1. 高度超过多个line 2. 高宽比超过某个值
- vertical_spans = []
- for span in spans:
- if span['type'] in [ContentType.TEXT]:
- for block in all_bboxes + all_discarded_blocks:
- if block[7] in [BlockType.IMAGE_BODY, BlockType.TABLE_BODY, BlockType.INTERLINE_EQUATION]:
- continue
- if calculate_overlap_area_in_bbox1_area_ratio(span['bbox'], block[0:4]) > 0.5:
- if span['height'] > median_span_height * 3 and span['height'] > span['width'] * 3:
- vertical_spans.append(span)
- elif block in all_bboxes:
- useful_spans.append(span)
- else:
- unuseful_spans.append(span)
- break
- """垂直的span框直接用line进行填充"""
- if len(vertical_spans) > 0:
- for pdfium_line in page_all_lines:
- for span in vertical_spans:
- if calculate_overlap_area_in_bbox1_area_ratio(pdfium_line['bbox'].bbox, span['bbox']) > 0.5:
- for pdfium_span in pdfium_line['spans']:
- span['content'] += pdfium_span['text']
- break
- for span in vertical_spans:
- if len(span['content']) == 0:
- spans.remove(span)
- """水平的span框先用char填充,再用ocr填充空的span框"""
- new_spans = []
- for span in useful_spans + unuseful_spans:
- if span['type'] in [ContentType.TEXT]:
- span['chars'] = []
- new_spans.append(span)
- need_ocr_spans = fill_char_in_spans(new_spans, page_all_chars, median_span_height)
- """对未填充的span进行ocr"""
- if len(need_ocr_spans) > 0:
- for span in need_ocr_spans:
- # 对span的bbox截图再ocr
- span_pil_img = get_crop_img(span['bbox'], pil_img, scale)
- span_img = cv2.cvtColor(np.array(span_pil_img), cv2.COLOR_RGB2BGR)
- # 计算span的对比度,低于0.20的span不进行ocr
- if calculate_contrast(span_img, img_mode='bgr') <= 0.17:
- spans.remove(span)
- continue
- span['content'] = ''
- span['score'] = 1.0
- span['np_img'] = span_img
- return spans
- def fill_char_in_spans(spans, all_chars, median_span_height):
- # 简单从上到下排一下序
- spans = sorted(spans, key=lambda x: x['bbox'][1])
- grid_size = median_span_height
- grid = collections.defaultdict(list)
- for i, span in enumerate(spans):
- start_cell = int(span['bbox'][1] / grid_size)
- end_cell = int(span['bbox'][3] / grid_size)
- for cell_idx in range(start_cell, end_cell + 1):
- grid[cell_idx].append(i)
- for char in all_chars:
- char_center_y = (char['bbox'][1] + char['bbox'][3]) / 2
- cell_idx = int(char_center_y / grid_size)
- candidate_span_indices = grid.get(cell_idx, [])
- for span_idx in candidate_span_indices:
- span = spans[span_idx]
- if calculate_char_in_span(char['bbox'], span['bbox'], char['char']):
- span['chars'].append(char)
- break
- need_ocr_spans = []
- for span in spans:
- chars_to_content(span)
- # 有的span中虽然没有字但有一两个空的占位符,用宽高和content长度过滤
- if len(span['content']) * span['height'] < span['width'] * 0.5:
- # logger.info(f"maybe empty span: {len(span['content'])}, {span['height']}, {span['width']}")
- need_ocr_spans.append(span)
- del span['height'], span['width']
- return need_ocr_spans
- LINE_STOP_FLAG = ('.', '!', '?', '。', '!', '?', ')', ')', '"', '”', ':', ':', ';', ';', ']', '】', '}', '}', '>', '》', '、', ',', ',', '-', '—', '–',)
- LINE_START_FLAG = ('(', '(', '"', '“', '【', '{', '《', '<', '「', '『', '【', '[',)
- Span_Height_Radio = 0.33 # 字符的中轴和span的中轴高度差不能超过1/3span高度
- def calculate_char_in_span(char_bbox, span_bbox, char, span_height_radio=Span_Height_Radio):
- char_center_x = (char_bbox[0] + char_bbox[2]) / 2
- char_center_y = (char_bbox[1] + char_bbox[3]) / 2
- span_center_y = (span_bbox[1] + span_bbox[3]) / 2
- span_height = span_bbox[3] - span_bbox[1]
- if (
- span_bbox[0] < char_center_x < span_bbox[2]
- and span_bbox[1] < char_center_y < span_bbox[3]
- and abs(char_center_y - span_center_y) < span_height * span_height_radio # 字符的中轴和span的中轴高度差不能超过Span_Height_Radio
- ):
- return True
- else:
- # 如果char是LINE_STOP_FLAG,就不用中心点判定,换一种方案(左边界在span区域内,高度判定和之前逻辑一致)
- # 主要是给结尾符号一个进入span的机会,这个char还应该离span右边界较近
- if char in LINE_STOP_FLAG:
- if (
- (span_bbox[2] - span_height) < char_bbox[0] < span_bbox[2]
- and char_center_x > span_bbox[0]
- and span_bbox[1] < char_center_y < span_bbox[3]
- and abs(char_center_y - span_center_y) < span_height * span_height_radio
- ):
- return True
- elif char in LINE_START_FLAG:
- if (
- span_bbox[0] < char_bbox[2] < (span_bbox[0] + span_height)
- and char_center_x < span_bbox[2]
- and span_bbox[1] < char_center_y < span_bbox[3]
- and abs(char_center_y - span_center_y) < span_height * span_height_radio
- ):
- return True
- else:
- return False
- def chars_to_content(span):
- # 检查span中的char是否为空
- if len(span['chars']) == 0:
- pass
- else:
- # 给chars按char_idx排序
- span['chars'] = sorted(span['chars'], key=lambda x: x['char_idx'])
- # Calculate the width of each character
- char_widths = [char['bbox'][2] - char['bbox'][0] for char in span['chars']]
- # Calculate the median width
- median_width = statistics.median(char_widths)
- content = ''
- for char in span['chars']:
- # 如果下一个char的x0和上一个char的x1距离超过0.25个字符宽度,则需要在中间插入一个空格
- char1 = char
- char2 = span['chars'][span['chars'].index(char) + 1] if span['chars'].index(char) + 1 < len(span['chars']) else None
- if char2 and char2['bbox'][0] - char1['bbox'][2] > median_width * 0.25 and char['char'] != ' ' and char2['char'] != ' ':
- content += f"{char['char']} "
- else:
- content += char['char']
- content = __replace_unicode(content)
- content = __replace_ligatures(content)
- content = __replace_ligatures(content)
- span['content'] = content.strip()
- del span['chars']
- def calculate_contrast(img, img_mode) -> float:
- """
- 计算给定图像的对比度。
- :param img: 图像,类型为numpy.ndarray
- :Param img_mode = 图像的色彩通道,'rgb' 或 'bgr'
- :return: 图像的对比度值
- """
- if img_mode == 'rgb':
- # 将RGB图像转换为灰度图
- gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
- elif img_mode == 'bgr':
- # 将BGR图像转换为灰度图
- gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- else:
- raise ValueError("Invalid image mode. Please provide 'rgb' or 'bgr'.")
- # 计算均值和标准差
- mean_value = np.mean(gray_img)
- std_dev = np.std(gray_img)
- # 对比度定义为标准差除以平均值(加上小常数避免除零错误)
- contrast = std_dev / (mean_value + 1e-6)
- # logger.debug(f"contrast: {contrast}")
- return round(contrast, 2)
|