user_api.py 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. """
  2. 用户输入:
  3. model数组,每个元素代表一个页面
  4. pdf在s3的路径
  5. 截图保存的s3位置
  6. 然后:
  7. 1)根据s3路径,调用spark集群的api,拿到ak,sk,endpoint,构造出s3PDFReader
  8. 2)根据用户输入的s3地址,调用spark集群的api,拿到ak,sk,endpoint,构造出s3ImageWriter
  9. 其余部分至于构造s3cli, 获取ak,sk都在code-clean里写代码完成。不要反向依赖!!!
  10. """
  11. import re
  12. from loguru import logger
  13. from magic_pdf.rw import AbsReaderWriter
  14. from magic_pdf.pdf_parse_by_ocr_v2 import parse_pdf_by_ocr
  15. from magic_pdf.pdf_parse_by_txt_v2 import parse_pdf_by_txt
  16. PARSE_TYPE_TXT = "txt"
  17. PARSE_TYPE_OCR = "ocr"
  18. def parse_txt_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args,
  19. **kwargs):
  20. """
  21. 解析文本类pdf
  22. """
  23. pdf_info_dict = parse_pdf_by_txt(
  24. pdf_bytes,
  25. pdf_models,
  26. imageWriter,
  27. start_page_id=start_page,
  28. debug_mode=is_debug,
  29. )
  30. pdf_info_dict["_parse_type"] = PARSE_TYPE_TXT
  31. return pdf_info_dict
  32. def parse_ocr_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args,
  33. **kwargs):
  34. """
  35. 解析ocr类pdf
  36. """
  37. pdf_info_dict = parse_pdf_by_ocr(
  38. pdf_bytes,
  39. pdf_models,
  40. imageWriter,
  41. start_page_id=start_page,
  42. debug_mode=is_debug,
  43. )
  44. pdf_info_dict["_parse_type"] = PARSE_TYPE_OCR
  45. return pdf_info_dict
  46. def parse_union_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0,
  47. *args, **kwargs):
  48. """
  49. ocr和文本混合的pdf,全部解析出来
  50. """
  51. def parse_pdf(method):
  52. try:
  53. return method(
  54. pdf_bytes,
  55. pdf_models,
  56. imageWriter,
  57. start_page_id=start_page,
  58. debug_mode=is_debug,
  59. )
  60. except Exception as e:
  61. logger.exception(e)
  62. return None
  63. pdf_info_dict = parse_pdf(parse_pdf_by_txt)
  64. text_all = ""
  65. for page_dict in pdf_info_dict['pdf_info']:
  66. for para_block in page_dict['para_blocks']:
  67. if para_block['type'] in ['title', 'text']:
  68. for line in para_block['lines']:
  69. for span in line['spans']:
  70. text_all += span['content']
  71. def calculate_garbled_rate(text):
  72. garbage_regex = re.compile(r'[^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a\u3000-\u303f\uff00-\uffef]')
  73. # 计算乱码字符的数量
  74. garbage_count = len(garbage_regex.findall(text))
  75. total = len(text)
  76. if total == 0:
  77. return 0 # 避免除以零的错误
  78. return garbage_count / total
  79. garbled_rate = calculate_garbled_rate(text_all)
  80. if pdf_info_dict is None or pdf_info_dict.get("_need_drop", False) or garbled_rate > 0.8:
  81. logger.warning(f"parse_pdf_by_txt drop or error or garbled_rate too large, switch to parse_pdf_by_ocr")
  82. pdf_info_dict = parse_pdf(parse_pdf_by_ocr)
  83. if pdf_info_dict is None:
  84. raise Exception("Both parse_pdf_by_txt and parse_pdf_by_ocr failed.")
  85. else:
  86. pdf_info_dict["_parse_type"] = PARSE_TYPE_OCR
  87. else:
  88. pdf_info_dict["_parse_type"] = PARSE_TYPE_TXT
  89. return pdf_info_dict