| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- from torch import nn
- from .det_mobilenet_v3 import ConvBNLayer, ResidualUnit, make_divisible
- class MobileNetV3(nn.Module):
- def __init__(
- self,
- in_channels=3,
- model_name="small",
- scale=0.5,
- large_stride=None,
- small_stride=None,
- **kwargs
- ):
- super(MobileNetV3, self).__init__()
- if small_stride is None:
- small_stride = [2, 2, 2, 2]
- if large_stride is None:
- large_stride = [1, 2, 2, 2]
- assert isinstance(
- large_stride, list
- ), "large_stride type must " "be list but got {}".format(type(large_stride))
- assert isinstance(
- small_stride, list
- ), "small_stride type must " "be list but got {}".format(type(small_stride))
- assert (
- len(large_stride) == 4
- ), "large_stride length must be " "4 but got {}".format(len(large_stride))
- assert (
- len(small_stride) == 4
- ), "small_stride length must be " "4 but got {}".format(len(small_stride))
- if model_name == "large":
- cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, False, "relu", large_stride[0]],
- [3, 64, 24, False, "relu", (large_stride[1], 1)],
- [3, 72, 24, False, "relu", 1],
- [5, 72, 40, True, "relu", (large_stride[2], 1)],
- [5, 120, 40, True, "relu", 1],
- [5, 120, 40, True, "relu", 1],
- [3, 240, 80, False, "hard_swish", 1],
- [3, 200, 80, False, "hard_swish", 1],
- [3, 184, 80, False, "hard_swish", 1],
- [3, 184, 80, False, "hard_swish", 1],
- [3, 480, 112, True, "hard_swish", 1],
- [3, 672, 112, True, "hard_swish", 1],
- [5, 672, 160, True, "hard_swish", (large_stride[3], 1)],
- [5, 960, 160, True, "hard_swish", 1],
- [5, 960, 160, True, "hard_swish", 1],
- ]
- cls_ch_squeeze = 960
- elif model_name == "small":
- cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, True, "relu", (small_stride[0], 1)],
- [3, 72, 24, False, "relu", (small_stride[1], 1)],
- [3, 88, 24, False, "relu", 1],
- [5, 96, 40, True, "hard_swish", (small_stride[2], 1)],
- [5, 240, 40, True, "hard_swish", 1],
- [5, 240, 40, True, "hard_swish", 1],
- [5, 120, 48, True, "hard_swish", 1],
- [5, 144, 48, True, "hard_swish", 1],
- [5, 288, 96, True, "hard_swish", (small_stride[3], 1)],
- [5, 576, 96, True, "hard_swish", 1],
- [5, 576, 96, True, "hard_swish", 1],
- ]
- cls_ch_squeeze = 576
- else:
- raise NotImplementedError(
- "mode[" + model_name + "_model] is not implemented!"
- )
- supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
- assert (
- scale in supported_scale
- ), "supported scales are {} but input scale is {}".format(
- supported_scale, scale
- )
- inplanes = 16
- # conv1
- self.conv1 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=make_divisible(inplanes * scale),
- kernel_size=3,
- stride=2,
- padding=1,
- groups=1,
- if_act=True,
- act="hard_swish",
- name="conv1",
- )
- i = 0
- block_list = []
- inplanes = make_divisible(inplanes * scale)
- for k, exp, c, se, nl, s in cfg:
- block_list.append(
- ResidualUnit(
- in_channels=inplanes,
- mid_channels=make_divisible(scale * exp),
- out_channels=make_divisible(scale * c),
- kernel_size=k,
- stride=s,
- use_se=se,
- act=nl,
- name="conv" + str(i + 2),
- )
- )
- inplanes = make_divisible(scale * c)
- i += 1
- self.blocks = nn.Sequential(*block_list)
- self.conv2 = ConvBNLayer(
- in_channels=inplanes,
- out_channels=make_divisible(scale * cls_ch_squeeze),
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- if_act=True,
- act="hard_swish",
- name="conv_last",
- )
- self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
- self.out_channels = make_divisible(scale * cls_ch_squeeze)
- def forward(self, x):
- x = self.conv1(x)
- x = self.blocks(x)
- x = self.conv2(x)
- x = self.pool(x)
- return x
|