| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 |
- import time
- import torch
- from loguru import logger
- import numpy as np
- from magic_pdf.libs.clean_memory import clean_memory
- def crop_img(input_res, input_np_img, crop_paste_x=0, crop_paste_y=0):
- crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
- crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
- # Calculate new dimensions
- crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
- crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
- # Create a white background array
- return_image = np.ones((crop_new_height, crop_new_width, 3), dtype=np.uint8) * 255
- # Crop the original image using numpy slicing
- cropped_img = input_np_img[crop_ymin:crop_ymax, crop_xmin:crop_xmax]
- # Paste the cropped image onto the white background
- return_image[crop_paste_y:crop_paste_y + (crop_ymax - crop_ymin),
- crop_paste_x:crop_paste_x + (crop_xmax - crop_xmin)] = cropped_img
- return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width,
- crop_new_height]
- return return_image, return_list
- def get_coords_and_area(table):
- """Extract coordinates and area from a table."""
- xmin, ymin = int(table['poly'][0]), int(table['poly'][1])
- xmax, ymax = int(table['poly'][4]), int(table['poly'][5])
- area = (xmax - xmin) * (ymax - ymin)
- return xmin, ymin, xmax, ymax, area
- def calculate_intersection(box1, box2):
- """Calculate intersection coordinates between two boxes."""
- intersection_xmin = max(box1[0], box2[0])
- intersection_ymin = max(box1[1], box2[1])
- intersection_xmax = min(box1[2], box2[2])
- intersection_ymax = min(box1[3], box2[3])
- # Check if intersection is valid
- if intersection_xmax <= intersection_xmin or intersection_ymax <= intersection_ymin:
- return None
- return intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax
- def calculate_iou(box1, box2):
- """Calculate IoU between two boxes."""
- intersection = calculate_intersection(box1[:4], box2[:4])
- if not intersection:
- return 0
- intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax = intersection
- intersection_area = (intersection_xmax - intersection_xmin) * (intersection_ymax - intersection_ymin)
- area1, area2 = box1[4], box2[4]
- union_area = area1 + area2 - intersection_area
- return intersection_area / union_area if union_area > 0 else 0
- def is_inside(small_box, big_box, overlap_threshold=0.8):
- """Check if small_box is inside big_box by at least overlap_threshold."""
- intersection = calculate_intersection(small_box[:4], big_box[:4])
- if not intersection:
- return False
- intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax = intersection
- intersection_area = (intersection_xmax - intersection_xmin) * (intersection_ymax - intersection_ymin)
- # Check if overlap exceeds threshold
- return intersection_area >= overlap_threshold * small_box[4]
- def do_overlap(box1, box2):
- """Check if two boxes overlap."""
- return calculate_intersection(box1[:4], box2[:4]) is not None
- def merge_high_iou_tables(table_res_list, layout_res, table_indices, iou_threshold=0.7):
- """Merge tables with IoU > threshold."""
- if len(table_res_list) < 2:
- return table_res_list, table_indices
- table_info = [get_coords_and_area(table) for table in table_res_list]
- merged = True
- while merged:
- merged = False
- i = 0
- while i < len(table_res_list) - 1:
- j = i + 1
- while j < len(table_res_list):
- iou = calculate_iou(table_info[i], table_info[j])
- if iou > iou_threshold:
- # Merge tables by taking their union
- x1_min, y1_min, x1_max, y1_max, _ = table_info[i]
- x2_min, y2_min, x2_max, y2_max, _ = table_info[j]
- union_xmin = min(x1_min, x2_min)
- union_ymin = min(y1_min, y2_min)
- union_xmax = max(x1_max, x2_max)
- union_ymax = max(y1_max, y2_max)
- # Create merged table
- merged_table = table_res_list[i].copy()
- merged_table['poly'][0] = union_xmin
- merged_table['poly'][1] = union_ymin
- merged_table['poly'][2] = union_xmax
- merged_table['poly'][3] = union_ymin
- merged_table['poly'][4] = union_xmax
- merged_table['poly'][5] = union_ymax
- merged_table['poly'][6] = union_xmin
- merged_table['poly'][7] = union_ymax
- # Update layout_res
- to_remove = [table_indices[j], table_indices[i]]
- for idx in sorted(to_remove, reverse=True):
- del layout_res[idx]
- layout_res.append(merged_table)
- # Update tracking lists
- table_indices = [k if k < min(to_remove) else
- k - 1 if k < max(to_remove) else
- k - 2 if k > max(to_remove) else
- len(layout_res) - 1
- for k in table_indices
- if k not in to_remove]
- table_indices.append(len(layout_res) - 1)
- # Update table lists
- table_res_list.pop(j)
- table_res_list.pop(i)
- table_res_list.append(merged_table)
- # Update table_info
- table_info = [get_coords_and_area(table) for table in table_res_list]
- merged = True
- break
- j += 1
- if merged:
- break
- i += 1
- return table_res_list, table_indices
- def filter_nested_tables(table_res_list, overlap_threshold=0.8, area_threshold=0.8):
- """Remove big tables containing multiple smaller tables within them."""
- if len(table_res_list) < 3:
- return table_res_list
- table_info = [get_coords_and_area(table) for table in table_res_list]
- big_tables_idx = []
- for i in range(len(table_res_list)):
- # Find tables inside this one
- tables_inside = [j for j in range(len(table_res_list))
- if i != j and is_inside(table_info[j], table_info[i], overlap_threshold)]
- # Continue if there are at least 2 tables inside
- if len(tables_inside) >= 2:
- # Check if inside tables overlap with each other
- tables_overlap = any(do_overlap(table_info[tables_inside[idx1]], table_info[tables_inside[idx2]])
- for idx1 in range(len(tables_inside))
- for idx2 in range(idx1 + 1, len(tables_inside)))
- # If no overlaps, check area condition
- if not tables_overlap:
- total_inside_area = sum(table_info[j][4] for j in tables_inside)
- big_table_area = table_info[i][4]
- if total_inside_area > area_threshold * big_table_area:
- big_tables_idx.append(i)
- return [table for i, table in enumerate(table_res_list) if i not in big_tables_idx]
- def get_res_list_from_layout_res(layout_res, iou_threshold=0.7, overlap_threshold=0.8, area_threshold=0.8):
- """Extract OCR, table and other regions from layout results."""
- ocr_res_list = []
- table_res_list = []
- table_indices = []
- single_page_mfdetrec_res = []
- # Categorize regions
- for i, res in enumerate(layout_res):
- category_id = int(res['category_id'])
- if category_id in [13, 14]: # Formula regions
- single_page_mfdetrec_res.append({
- "bbox": [int(res['poly'][0]), int(res['poly'][1]),
- int(res['poly'][4]), int(res['poly'][5])],
- })
- elif category_id in [0, 1, 2, 4, 6, 7]: # OCR regions
- ocr_res_list.append(res)
- elif category_id == 5: # Table regions
- table_res_list.append(res)
- table_indices.append(i)
- # Process tables: merge high IoU tables first, then filter nested tables
- table_res_list, table_indices = merge_high_iou_tables(
- table_res_list, layout_res, table_indices, iou_threshold)
- filtered_table_res_list = filter_nested_tables(
- table_res_list, overlap_threshold, area_threshold)
- # Remove filtered out tables from layout_res
- if len(filtered_table_res_list) < len(table_res_list):
- kept_tables = set(id(table) for table in filtered_table_res_list)
- to_remove = [table_indices[i] for i, table in enumerate(table_res_list)
- if id(table) not in kept_tables]
- for idx in sorted(to_remove, reverse=True):
- del layout_res[idx]
- return ocr_res_list, filtered_table_res_list, single_page_mfdetrec_res
- def clean_vram(device, vram_threshold=8):
- total_memory = get_vram(device)
- if total_memory and total_memory <= vram_threshold:
- gc_start = time.time()
- clean_memory(device)
- gc_time = round(time.time() - gc_start, 2)
- logger.info(f"gc time: {gc_time}")
- def get_vram(device):
- if torch.cuda.is_available() and str(device).startswith("cuda"):
- total_memory = torch.cuda.get_device_properties(device).total_memory / (1024 ** 3) # 将字节转换为 GB
- return total_memory
- elif str(device).startswith("npu"):
- import torch_npu
- if torch_npu.npu.is_available():
- total_memory = torch_npu.npu.get_device_properties(device).total_memory / (1024 ** 3) # 转为 GB
- return total_memory
- else:
- return None
|