vlm_analyze.py 3.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import time
  3. from loguru import logger
  4. from ...data.data_reader_writer import DataWriter
  5. from mineru.utils.pdf_image_tools import load_images_from_pdf
  6. from .base_predictor import BasePredictor
  7. from .predictor import get_predictor
  8. from .token_to_middle_json import result_to_middle_json
  9. from ...utils.models_download_utils import auto_download_and_get_model_root_path
  10. class ModelSingleton:
  11. _instance = None
  12. _models = {}
  13. def __new__(cls, *args, **kwargs):
  14. if cls._instance is None:
  15. cls._instance = super().__new__(cls)
  16. return cls._instance
  17. def get_model(
  18. self,
  19. backend: str,
  20. model_path: str | None,
  21. server_url: str | None,
  22. ) -> BasePredictor:
  23. key = (backend, model_path, server_url)
  24. if key not in self._models:
  25. if backend in ['transformers', 'sglang-engine'] and not model_path:
  26. model_path = auto_download_and_get_model_root_path("/","vlm")
  27. self._models[key] = get_predictor(
  28. backend=backend,
  29. model_path=model_path,
  30. server_url=server_url,
  31. )
  32. return self._models[key]
  33. def doc_analyze(
  34. pdf_bytes,
  35. image_writer: DataWriter | None,
  36. predictor: BasePredictor | None = None,
  37. backend="transformers",
  38. model_path: str | None = None,
  39. server_url: str | None = None,
  40. ):
  41. if predictor is None:
  42. predictor = ModelSingleton().get_model(backend, model_path, server_url)
  43. # load_images_start = time.time()
  44. images_list, pdf_doc = load_images_from_pdf(pdf_bytes)
  45. images_base64_list = [image_dict["img_base64"] for image_dict in images_list]
  46. # load_images_time = round(time.time() - load_images_start, 2)
  47. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  48. # infer_start = time.time()
  49. results = predictor.batch_predict(images=images_base64_list)
  50. # infer_time = round(time.time() - infer_start, 2)
  51. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  52. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  53. return middle_json, results
  54. async def aio_doc_analyze(
  55. pdf_bytes,
  56. image_writer: DataWriter | None,
  57. predictor: BasePredictor | None = None,
  58. backend="transformers",
  59. model_path: str | None = None,
  60. server_url: str | None = None,
  61. ):
  62. if predictor is None:
  63. predictor = ModelSingleton().get_model(backend, model_path, server_url)
  64. load_images_start = time.time()
  65. images_list, pdf_doc = load_images_from_pdf(pdf_bytes)
  66. images_base64_list = [image_dict["img_base64"] for image_dict in images_list]
  67. load_images_time = round(time.time() - load_images_start, 2)
  68. logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  69. infer_start = time.time()
  70. results = await predictor.aio_batch_predict(images=images_base64_list)
  71. infer_time = round(time.time() - infer_start, 2)
  72. logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  73. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  74. return middle_json