| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # Copyright (c) Opendatalab. All rights reserved.
- import time
- from loguru import logger
- from ...data.data_reader_writer import DataWriter
- from mineru.utils.pdf_image_tools import load_images_from_pdf
- from .base_predictor import BasePredictor
- from .predictor import get_predictor
- from .token_to_middle_json import result_to_middle_json
- from ...utils.enum_class import ModelPath
- from ...utils.models_download_utils import auto_download_and_get_model_root_path
- class ModelSingleton:
- _instance = None
- _models = {}
- def __new__(cls, *args, **kwargs):
- if cls._instance is None:
- cls._instance = super().__new__(cls)
- return cls._instance
- def get_model(
- self,
- backend: str,
- model_path: str | None,
- server_url: str | None,
- ) -> BasePredictor:
- key = (backend, model_path, server_url)
- if key not in self._models:
- if backend in ['transformers', 'sglang-engine'] and not model_path:
- model_path = auto_download_and_get_model_root_path("/","vlm")
- self._models[key] = get_predictor(
- backend=backend,
- model_path=model_path,
- server_url=server_url,
- )
- return self._models[key]
- def doc_analyze(
- pdf_bytes,
- image_writer: DataWriter | None,
- predictor: BasePredictor | None = None,
- backend="transformers",
- model_path: str | None = None,
- server_url: str | None = None,
- ):
- if predictor is None:
- predictor = ModelSingleton().get_model(backend, model_path, server_url)
- # load_images_start = time.time()
- images_list, pdf_doc = load_images_from_pdf(pdf_bytes)
- images_base64_list = [image_dict["img_base64"] for image_dict in images_list]
- # load_images_time = round(time.time() - load_images_start, 2)
- # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
- # infer_start = time.time()
- results = predictor.batch_predict(images=images_base64_list)
- # infer_time = round(time.time() - infer_start, 2)
- # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
- middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
- return middle_json, results
- async def aio_doc_analyze(
- pdf_bytes,
- image_writer: DataWriter | None,
- predictor: BasePredictor | None = None,
- backend="transformers",
- model_path: str | None = None,
- server_url: str | None = None,
- ):
- if predictor is None:
- predictor = ModelSingleton().get_model(backend, model_path, server_url)
- load_images_start = time.time()
- images_list, pdf_doc = load_images_from_pdf(pdf_bytes)
- images_base64_list = [image_dict["img_base64"] for image_dict in images_list]
- load_images_time = round(time.time() - load_images_start, 2)
- logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
- infer_start = time.time()
- results = await predictor.aio_batch_predict(images=images_base64_list)
- infer_time = round(time.time() - infer_start, 2)
- logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
- middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
- return middle_json
|