magic_model.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  8. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  9. from magic_pdf.libs.math import float_gt
  10. from magic_pdf.libs.boxbase import _is_in, bbox_relative_pos, bbox_distance
  11. class MagicModel:
  12. """
  13. 每个函数没有得到元素的时候返回空list
  14. """
  15. def __fix_axis(self):
  16. for model_page_info in self.__model_list:
  17. page_no = model_page_info["page_info"]["page_no"]
  18. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  19. model_page_info, self.__docs[page_no]
  20. )
  21. layout_dets = model_page_info["layout_dets"]
  22. for layout_det in layout_dets:
  23. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  24. bbox = [
  25. int(x0 / horizontal_scale_ratio),
  26. int(y0 / vertical_scale_ratio),
  27. int(x1 / horizontal_scale_ratio),
  28. int(y1 / vertical_scale_ratio),
  29. ]
  30. layout_det["bbox"] = bbox
  31. def __init__(self, model_list: list, docs: fitz.Document):
  32. self.__model_list = model_list
  33. self.__docs = docs
  34. self.__fix_axis()
  35. def __reduct_overlap(self, bboxes):
  36. N = len(bboxes)
  37. keep = [True] * N
  38. for i in range(N):
  39. for j in range(N):
  40. if i == j:
  41. continue
  42. if _is_in(bboxes[i], bboxes[j]):
  43. keep[i] = False
  44. return [bboxes[i] for i in range(N) if keep[i]]
  45. def __tie_up_category_by_distance(
  46. self, page_no, subject_category_id, object_category_id
  47. ):
  48. """
  49. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  50. """
  51. ret = []
  52. MAX_DIS_OF_POINT = 10**9 + 7
  53. subjects = self.__reduct_overlap(
  54. list(
  55. map(
  56. lambda x: x["bbox"],
  57. filter(
  58. lambda x: x["category_id"] == subject_category_id,
  59. self.__model_list[page_no]["layout_dets"],
  60. ),
  61. )
  62. )
  63. )
  64. objects = self.__reduct_overlap(
  65. list(
  66. map(
  67. lambda x: x["bbox"],
  68. filter(
  69. lambda x: x["category_id"] == object_category_id,
  70. self.__model_list[page_no]["layout_dets"],
  71. ),
  72. )
  73. )
  74. )
  75. subject_object_relation_map = {}
  76. subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2) # get the distance !
  77. all_bboxes = []
  78. for v in subjects:
  79. all_bboxes.append({"category_id": subject_category_id, "bbox": v})
  80. for v in objects:
  81. all_bboxes.append({"category_id": object_category_id, "bbox": v})
  82. N = len(all_bboxes)
  83. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  84. for i in range(N):
  85. for j in range(i):
  86. if (
  87. all_bboxes[i]["category_id"] == subject_category_id
  88. and all_bboxes[j]["category_id"] == subject_category_id
  89. ):
  90. continue
  91. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  92. dis[j][i] = dis[i][j]
  93. used = set()
  94. for i in range(N):
  95. # 求第 i 个 subject 所关联的 object
  96. if all_bboxes[i]["category_id"] != subject_category_id:
  97. continue
  98. seen = set()
  99. candidates = []
  100. arr = []
  101. for j in range(N):
  102. pos_flag_count = sum(
  103. list(
  104. map(
  105. lambda x: 1 if x else 0,
  106. bbox_relative_pos(
  107. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  108. ),
  109. )
  110. )
  111. )
  112. if pos_flag_count > 1:
  113. continue
  114. if (
  115. all_bboxes[j]["category_id"] != object_category_id
  116. or j in used
  117. or dis[i][j] == MAX_DIS_OF_POINT
  118. ):
  119. continue
  120. arr.append((dis[i][j], j))
  121. arr.sort(key=lambda x: x[0])
  122. if len(arr) > 0:
  123. candidates.append(arr[0][1])
  124. seen.add(arr[0][1])
  125. # 已经获取初始种子
  126. for j in set(candidates):
  127. tmp = []
  128. for k in range(i + 1, N):
  129. pos_flag_count = sum(
  130. list(
  131. map(
  132. lambda x: 1 if x else 0,
  133. bbox_relative_pos(
  134. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  135. ),
  136. )
  137. )
  138. )
  139. if pos_flag_count > 1:
  140. continue
  141. if (
  142. all_bboxes[k]["category_id"] != object_category_id
  143. or k in used
  144. or k in seen
  145. or dis[j][k] == MAX_DIS_OF_POINT
  146. ):
  147. continue
  148. is_nearest = True
  149. for l in range(i + 1, N):
  150. if l in (j, k) or l in used or l in seen:
  151. continue
  152. if not float_gt(dis[l][k], dis[j][k]):
  153. is_nearest = False
  154. break
  155. if is_nearest:
  156. tmp.append(k)
  157. seen.add(k)
  158. candidates = tmp
  159. if len(candidates) == 0:
  160. break
  161. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  162. # 先扩一下 bbox,
  163. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  164. all_bboxes[i]["bbox"][0]
  165. ]
  166. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  167. all_bboxes[i]["bbox"][1]
  168. ]
  169. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  170. all_bboxes[i]["bbox"][2]
  171. ]
  172. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  173. all_bboxes[i]["bbox"][3]
  174. ]
  175. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  176. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  177. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  178. caption_poses = [
  179. [ox0, oy0, ix0, oy1],
  180. [ox0, oy0, ox1, iy0],
  181. [ox0, iy1, ox1, oy1],
  182. [ix1, oy0, ox1, oy1],
  183. ]
  184. caption_areas = []
  185. for bbox in caption_poses:
  186. embed_arr = []
  187. for idx in seen:
  188. if _is_in(all_bboxes[idx]["bbox"], bbox):
  189. embed_arr.append(idx)
  190. if len(embed_arr) > 0:
  191. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  192. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  193. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  194. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  195. caption_areas.append(
  196. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  197. )
  198. else:
  199. caption_areas.append(0)
  200. subject_object_relation_map[i] = []
  201. if max(caption_areas) > 0:
  202. max_area_idx = caption_areas.index(max(caption_areas))
  203. caption_bbox = caption_poses[max_area_idx]
  204. for j in seen:
  205. if _is_in(all_bboxes[j]["bbox"], caption_bbox):
  206. used.add(j)
  207. subject_object_relation_map[i].append(j)
  208. for i in sorted(subject_object_relation_map.keys()):
  209. result = {
  210. "subject_body": all_bboxes[i]["bbox"],
  211. "all": all_bboxes[i]["bbox"],
  212. }
  213. if len(subject_object_relation_map[i]) > 0:
  214. x0 = min(
  215. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  216. )
  217. y0 = min(
  218. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  219. )
  220. x1 = max(
  221. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  222. )
  223. y1 = max(
  224. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  225. )
  226. result["object_body"] = [x0, y0, x1, y1]
  227. result["all"] = [
  228. min(x0, all_bboxes[i]["bbox"][0]),
  229. min(y0, all_bboxes[i]["bbox"][1]),
  230. max(x1, all_bboxes[i]["bbox"][2]),
  231. max(y1, all_bboxes[i]["bbox"][3]),
  232. ]
  233. ret.append(result)
  234. total_subject_object_dis = 0
  235. # 计算已经配对的 distance 距离
  236. for i in subject_object_relation_map.keys():
  237. for j in subject_object_relation_map[i]:
  238. total_subject_object_dis += bbox_distance(
  239. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  240. )
  241. # 计算未匹配的 subject 和 object 的距离(非精确版)
  242. with_caption_subject = set(
  243. [
  244. key
  245. for key in subject_object_relation_map.keys()
  246. if len(subject_object_relation_map[i]) > 0
  247. ]
  248. )
  249. for i in range(N):
  250. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  251. continue
  252. candidates = []
  253. for j in range(N):
  254. if (
  255. all_bboxes[j]["category_id"] != subject_category_id
  256. or j in with_caption_subject
  257. ):
  258. continue
  259. candidates.append((dis[i][j], j))
  260. if len(candidates) > 0:
  261. candidates.sort(key=lambda x: x[0])
  262. total_subject_object_dis += candidates[0][1]
  263. with_caption_subject.add(j)
  264. return ret, total_subject_object_dis
  265. def get_imgs(self, page_no: int): # @许瑞
  266. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  267. return [
  268. {
  269. "bbox": record["all"],
  270. "img_body_bbox": record["subject_body"],
  271. "img_caption_bbox": record.get("object_body", None),
  272. }
  273. for record in records
  274. ]
  275. def get_tables(
  276. self, page_no: int
  277. ) -> list: # 3个坐标, caption, table主体,table-note
  278. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  279. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  280. ret = []
  281. N, M = len(with_captions), len(with_footnotes)
  282. assert N == M
  283. for i in range(N):
  284. record = {
  285. "table_caption_bbox": with_captions[i].get("object_body", None),
  286. "table_body_bbox": with_captions[i]["subject_body"],
  287. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  288. }
  289. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  290. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  291. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  292. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  293. record["bbox"] = [x0, y0, x1, y1]
  294. ret.append(record)
  295. return ret
  296. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  297. return inline_equations, interline_equations # @凯文
  298. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  299. pass # @凯文
  300. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  301. pass # @凯文
  302. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  303. pass # @凯文
  304. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  305. pass # @小蒙
  306. def get_ocr_spans(self, page_no: int) -> list:
  307. pass # @小蒙
  308. if __name__ == "__main__":
  309. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  310. if 0:
  311. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  312. model_file_path = r"linshixuqiu\19983-00_new.json"
  313. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  314. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  315. model_list = json.loads(model_json_txt)
  316. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  317. img_bucket_path = "imgs"
  318. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  319. pdf_docs = fitz.open("pdf", pdf_bytes)
  320. magic_model = MagicModel(model_list, pdf_docs)
  321. if 1:
  322. model_list = json.loads(
  323. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  324. )
  325. pdf_bytes = drw.read(
  326. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  327. )
  328. pdf_docs = fitz.open("pdf", pdf_bytes)
  329. magic_model = MagicModel(model_list, pdf_docs)
  330. for i in range(7):
  331. print(magic_model.get_imgs(i))