doc_analyze_by_custom_model.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. import time
  2. import fitz
  3. import numpy as np
  4. from loguru import logger
  5. import magic_pdf.model as model_config
  6. from magic_pdf.data.dataset import Dataset
  7. from magic_pdf.libs.clean_memory import clean_memory
  8. from magic_pdf.libs.config_reader import (get_device, get_formula_config,
  9. get_layout_config,
  10. get_local_models_dir,
  11. get_table_recog_config)
  12. from magic_pdf.model.model_list import MODEL
  13. from magic_pdf.model.operators import InferenceResult
  14. def dict_compare(d1, d2):
  15. return d1.items() == d2.items()
  16. def remove_duplicates_dicts(lst):
  17. unique_dicts = []
  18. for dict_item in lst:
  19. if not any(
  20. dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts
  21. ):
  22. unique_dicts.append(dict_item)
  23. return unique_dicts
  24. def load_images_from_pdf(
  25. pdf_bytes: bytes, dpi=200, start_page_id=0, end_page_id=None
  26. ) -> list:
  27. try:
  28. from PIL import Image
  29. except ImportError:
  30. logger.error('Pillow not installed, please install by pip.')
  31. exit(1)
  32. images = []
  33. with fitz.open('pdf', pdf_bytes) as doc:
  34. pdf_page_num = doc.page_count
  35. end_page_id = (
  36. end_page_id
  37. if end_page_id is not None and end_page_id >= 0
  38. else pdf_page_num - 1
  39. )
  40. if end_page_id > pdf_page_num - 1:
  41. logger.warning('end_page_id is out of range, use images length')
  42. end_page_id = pdf_page_num - 1
  43. for index in range(0, doc.page_count):
  44. if start_page_id <= index <= end_page_id:
  45. page = doc[index]
  46. mat = fitz.Matrix(dpi / 72, dpi / 72)
  47. pm = page.get_pixmap(matrix=mat, alpha=False)
  48. # If the width or height exceeds 4500 after scaling, do not scale further.
  49. if pm.width > 4500 or pm.height > 4500:
  50. pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
  51. img = Image.frombytes('RGB', (pm.width, pm.height), pm.samples)
  52. img = np.array(img)
  53. img_dict = {'img': img, 'width': pm.width, 'height': pm.height}
  54. else:
  55. img_dict = {'img': [], 'width': 0, 'height': 0}
  56. images.append(img_dict)
  57. return images
  58. class ModelSingleton:
  59. _instance = None
  60. _models = {}
  61. def __new__(cls, *args, **kwargs):
  62. if cls._instance is None:
  63. cls._instance = super().__new__(cls)
  64. return cls._instance
  65. def get_model(
  66. self,
  67. ocr: bool,
  68. show_log: bool,
  69. lang=None,
  70. layout_model=None,
  71. formula_enable=None,
  72. table_enable=None,
  73. ):
  74. key = (ocr, show_log, lang, layout_model, formula_enable, table_enable)
  75. if key not in self._models:
  76. self._models[key] = custom_model_init(
  77. ocr=ocr,
  78. show_log=show_log,
  79. lang=lang,
  80. layout_model=layout_model,
  81. formula_enable=formula_enable,
  82. table_enable=table_enable,
  83. )
  84. return self._models[key]
  85. def custom_model_init(
  86. ocr: bool = False,
  87. show_log: bool = False,
  88. lang=None,
  89. layout_model=None,
  90. formula_enable=None,
  91. table_enable=None,
  92. ):
  93. model = None
  94. if model_config.__model_mode__ == 'lite':
  95. logger.warning(
  96. 'The Lite mode is provided for developers to conduct testing only, and the output quality is '
  97. 'not guaranteed to be reliable.'
  98. )
  99. model = MODEL.Paddle
  100. elif model_config.__model_mode__ == 'full':
  101. model = MODEL.PEK
  102. if model_config.__use_inside_model__:
  103. model_init_start = time.time()
  104. if model == MODEL.Paddle:
  105. from magic_pdf.model.pp_structure_v2 import CustomPaddleModel
  106. custom_model = CustomPaddleModel(ocr=ocr, show_log=show_log, lang=lang)
  107. elif model == MODEL.PEK:
  108. from magic_pdf.model.pdf_extract_kit import CustomPEKModel
  109. # 从配置文件读取model-dir和device
  110. local_models_dir = get_local_models_dir()
  111. device = get_device()
  112. layout_config = get_layout_config()
  113. if layout_model is not None:
  114. layout_config['model'] = layout_model
  115. formula_config = get_formula_config()
  116. if formula_enable is not None:
  117. formula_config['enable'] = formula_enable
  118. table_config = get_table_recog_config()
  119. if table_enable is not None:
  120. table_config['enable'] = table_enable
  121. model_input = {
  122. 'ocr': ocr,
  123. 'show_log': show_log,
  124. 'models_dir': local_models_dir,
  125. 'device': device,
  126. 'table_config': table_config,
  127. 'layout_config': layout_config,
  128. 'formula_config': formula_config,
  129. 'lang': lang,
  130. }
  131. custom_model = CustomPEKModel(**model_input)
  132. else:
  133. logger.error('Not allow model_name!')
  134. exit(1)
  135. model_init_cost = time.time() - model_init_start
  136. logger.info(f'model init cost: {model_init_cost}')
  137. else:
  138. logger.error('use_inside_model is False, not allow to use inside model')
  139. exit(1)
  140. return custom_model
  141. def doc_analyze(
  142. dataset: Dataset,
  143. ocr: bool = False,
  144. show_log: bool = False,
  145. start_page_id=0,
  146. end_page_id=None,
  147. lang=None,
  148. layout_model=None,
  149. formula_enable=None,
  150. table_enable=None,
  151. ) -> InferenceResult:
  152. if lang == '':
  153. lang = None
  154. model_manager = ModelSingleton()
  155. custom_model = model_manager.get_model(
  156. ocr, show_log, lang, layout_model, formula_enable, table_enable
  157. )
  158. model_json = []
  159. doc_analyze_start = time.time()
  160. if end_page_id is None:
  161. end_page_id = len(dataset)
  162. for index in range(len(dataset)):
  163. page_data = dataset.get_page(index)
  164. img_dict = page_data.get_image()
  165. img = img_dict['img']
  166. page_width = img_dict['width']
  167. page_height = img_dict['height']
  168. if start_page_id <= index <= end_page_id:
  169. page_start = time.time()
  170. result = custom_model(img)
  171. logger.info(f'-----page_id : {index}, page total time: {round(time.time() - page_start, 2)}-----')
  172. else:
  173. result = []
  174. page_info = {'page_no': index, 'height': page_height, 'width': page_width}
  175. page_dict = {'layout_dets': result, 'page_info': page_info}
  176. model_json.append(page_dict)
  177. gc_start = time.time()
  178. clean_memory()
  179. gc_time = round(time.time() - gc_start, 2)
  180. logger.info(f'gc time: {gc_time}')
  181. doc_analyze_time = round(time.time() - doc_analyze_start, 2)
  182. doc_analyze_speed = round((end_page_id + 1 - start_page_id) / doc_analyze_time, 2)
  183. logger.info(
  184. f'doc analyze time: {round(time.time() - doc_analyze_start, 2)},'
  185. f' speed: {doc_analyze_speed} pages/second'
  186. )
  187. return InferenceResult(model_json, dataset)