| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- import math
- import re
- from typing import Iterable, List, Optional, Tuple
- import numpy as np
- import torch
- from sglang.srt.layers.quantization.base_config import QuantizationConfig
- from sglang.srt.mm_utils import (
- get_anyres_image_grid_shape, # unpad_image, unpad_image_shape
- )
- from sglang.srt.model_executor.forward_batch_info import ForwardBatch
- from sglang.srt.model_loader.weight_utils import default_weight_loader
- from sglang.srt.models.qwen2 import Qwen2ForCausalLM
- from sglang.srt.utils import add_prefix
- from torch import nn
- from transformers import (
- CLIPVisionConfig,
- CLIPVisionModel,
- SiglipVisionConfig,
- SiglipVisionModel,
- )
- from ..vlm_hf_model.configuration_mineru2 import Mineru2QwenConfig
- from ..vlm_hf_model.modeling_mineru2 import build_vision_projector
- from ...utils.models_download_utils import auto_download_and_get_model_root_path
- def flatten_nested_list(nested_list):
- if isinstance(nested_list, list):
- return [item for sublist in nested_list for item in flatten_nested_list(sublist)]
- else:
- return [nested_list]
- def downgrade_modality(modality):
- modality_str = str(modality)
- if "MULTI_IMAGES" in modality_str:
- return "multi-images"
- if "IMAGE" in modality_str:
- return "image"
- if "VIDEO" in modality_str:
- return "video"
- if "AUDIO" in modality_str:
- return "audio"
- raise ValueError(f"Unexpected modality: {modality_str}")
- class Mineru2QwenForCausalLM(nn.Module):
- def __init__(
- self,
- config: Mineru2QwenConfig,
- quant_config: Optional[QuantizationConfig] = None,
- prefix: str = "",
- ) -> None:
- super().__init__()
- self.config = config
- if getattr(self.config, "projector_hidden_act", None) is None:
- self.config.projector_hidden_act = "gelu"
- if getattr(self.config, "image_token_index", None) is None:
- self.config.image_token_index = 151646
- # load vision tower
- mm_vision_tower = self.config.mm_vision_tower
- model_root_path = auto_download_and_get_model_root_path(mm_vision_tower, "vlm")
- mm_vision_tower = f"{model_root_path}/{mm_vision_tower}"
- if "clip" in mm_vision_tower:
- vision_config = CLIPVisionConfig.from_pretrained(mm_vision_tower)
- self.vision_tower = CLIPVisionModel(vision_config) # type: ignore
- elif "siglip" in mm_vision_tower:
- vision_config = SiglipVisionConfig.from_pretrained(mm_vision_tower)
- self.vision_tower = SiglipVisionModel(vision_config) # type: ignore
- # Siglip needs all feature tokens
- self.config.mm_vision_select_feature = "full"
- else:
- raise ValueError(f"Unexpected mm_vision_tower: {mm_vision_tower}")
- ### EDIT: change projector
- # the name `projector` contains `proj` which is often used in attention layers, which can cause bugs in quantization.
- self.multi_modal_mlp = build_vision_projector(config)
- self.language_model = Qwen2ForCausalLM(
- config,
- quant_config=quant_config,
- prefix=add_prefix("language_model", prefix),
- )
- if "unpad" in getattr(config, "mm_patch_merge_type", ""):
- self.language_model.model.image_newline = nn.Parameter(torch.empty(config.hidden_size))
- language_model_device = next(self.language_model.parameters()).device
- self.vision_tower = self.vision_tower.to(language_model_device)
- self.vision_tower.eval()
- self.vision_feature_layer = self.config.mm_vision_select_layer
- self.vision_feature_select_strategy = self.config.mm_vision_select_feature
- self.image_size = self.vision_tower.config.image_size
- self.patch_size = self.vision_tower.config.patch_size
- self.mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
- self.image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
- self.image_grid_pinpoints = getattr(self.config, "image_grid_pinpoints", None)
- self.image_feature_len = int((self.image_size // self.patch_size) ** 2)
- if self.vision_feature_select_strategy in ("patch", "full"):
- pass
- elif self.vision_feature_select_strategy == "cls_patch":
- self.image_feature_len += 1
- else:
- raise ValueError(f"Unexpected select feature: {self.select_feature}")
- def pad_input_ids(self, input_ids: List[int], image_inputs):
- if hasattr(image_inputs, "mm_items"): # MultimodalInputs
- # sglang==0.4.5.post3
- image_sizes = flatten_nested_list([item.image_sizes for item in image_inputs.mm_items])
- pad_values = [item.pad_value for item in image_inputs.mm_items]
- else: # ImageInputs
- # sglang==0.4.4.post1
- image_sizes = image_inputs.image_sizes
- pad_values = image_inputs.pad_values
- # hardcode for spatial_unpad + anyres
- # if image_inputs.modalities is not None and (
- # "multi-images" in image_inputs.modalities or "video" in image_inputs.modalities
- # ):
- # image_aspect_ratio = "pad"
- # else:
- # image_aspect_ratio = "anyres"
- offset_list = []
- image_inputs.image_pad_len = []
- for image_idx, image_s in enumerate(image_sizes):
- if len(image_sizes) > 16:
- # 2x2 pooling with stride 2
- new_image_feature_len = math.ceil(self.image_size / self.patch_size / 2) ** 2
- else:
- new_image_feature_len = self.image_feature_len # multiimage
- height = width = self.num_patches_per_side
- if "anyres" in self.config.image_aspect_ratio:
- num_patch_width, num_patch_height = get_anyres_image_grid_shape(
- image_s,
- self.image_grid_pinpoints,
- self.vision_tower.config.image_size,
- )
- h = num_patch_height * height
- w = num_patch_width * width
- ### EDIT: remove `unpad_image_shape`
- # new_h, new_w = unpad_image_shape(h, w, image_s)
- new_h, new_w = h, w
- if "anyres_max" in self.config.image_aspect_ratio:
- matched_anyres_max_num_patches = re.match(r".*anyres_max_(\d+)", self.config.image_aspect_ratio)
- if matched_anyres_max_num_patches:
- max_num_patches = int(matched_anyres_max_num_patches.group(1))
- times = math.sqrt(new_h * new_w / (max_num_patches * self.image_feature_len))
- if times > 1.1:
- new_h = int(new_h // times)
- new_w = int(new_w // times)
- new_image_feature_len += new_h * (new_w + 1)
- try:
- offset = input_ids.index(self.config.image_token_index)
- except ValueError:
- offset = 0
- # old_len + pad_len - 1, because we need to remove image_token_id
- input_ids = input_ids[:offset] + [pad_values[image_idx]] * new_image_feature_len + input_ids[offset + 1 :]
- offset_list.append(offset)
- image_inputs.image_pad_len.append(new_image_feature_len)
- image_inputs.image_offsets = offset_list
- return input_ids
- def encode_images(self, pixel_values: torch.Tensor) -> torch.Tensor:
- pixel_values = pixel_values.to(device=self.vision_tower.device, dtype=self.vision_tower.dtype)
- image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
- # NOTE: This is not memory efficient. (output_hidden_states=True) will save all the hidden stated.
- selected_image_feature = image_outputs.hidden_states[self.vision_feature_layer]
- if self.vision_feature_select_strategy in ["default", "patch"]:
- selected_image_feature = selected_image_feature[:, 1:]
- elif self.vision_feature_select_strategy == "full":
- selected_image_feature = selected_image_feature
- else:
- raise ValueError(f"Unexpected select feature strategy: {self.vision_feature_select_strategy}")
- image_features = self.multi_modal_mlp(selected_image_feature)
- return image_features
- @torch.no_grad()
- def forward(
- self,
- input_ids: torch.LongTensor,
- positions: torch.Tensor,
- forward_batch: ForwardBatch,
- ) -> torch.Tensor:
- if hasattr(forward_batch, "mm_inputs"):
- # sglang==0.4.5.post3
- image_inputs = forward_batch.mm_inputs
- is_sglang_mm_inputs = True
- else:
- # sglang==0.4.4.post1
- image_inputs = forward_batch.image_inputs
- is_sglang_mm_inputs = False
- if image_inputs is None:
- image_inputs = []
- if forward_batch.forward_mode.is_extend():
- # Clamp input ids. This is because the input_ids for the image tokens are
- # filled with the hash values of the image for the prefix matching in the radix attention.
- # There values are useless because their embeddings will be replaced by vision embeddings anyway.
- input_ids.clamp_(min=0, max=self.config.vocab_size - 1)
- # Embed text inputs
- input_embeds = self.language_model.model.embed_tokens(input_ids)
- # Got List[List[str]] extend it to List[str]
- # The length of the List should be equal to batch size
- modalities_list = []
- max_image_offset = []
- for im in image_inputs:
- if im:
- if hasattr(im, "mm_items"):
- # sglang==0.4.5.post3
- modalities_list.extend([downgrade_modality(item.modality) for item in im.mm_items])
- elif im.modalities is not None:
- # sglang==0.4.4.post1
- modalities_list.extend(im.modalities)
- if im and im.image_offsets:
- max_image_offset.append(np.max(np.array(im.image_offsets) + np.array(im.image_pad_len)))
- else:
- max_image_offset.append(-1)
- start_positions = positions[forward_batch.extend_start_loc].cpu().numpy()
- need_vision = start_positions <= np.array(max_image_offset)
- if need_vision.any():
- bs = forward_batch.batch_size
- if is_sglang_mm_inputs:
- # sglang==0.4.5.post3
- pixel_values = flatten_nested_list(
- [[item.pixel_values for item in image_inputs[i].mm_items] for i in range(bs) if need_vision[i]]
- ) # image_inputs[batch_idx].mm_items[item_idx].pixel_values is Tensor
- image_sizes = [
- flatten_nested_list([item.image_sizes for item in image_inputs[i].mm_items])
- for i in range(bs)
- if need_vision[i]
- ] # image_inputs[batch_idx].mm_items[item_idx].image_sizes should be tuple, but is list of tuple for now.
- else:
- # sglang==0.4.4.post1
- pixel_values = [image_inputs[i].pixel_values for i in range(bs) if need_vision[i]]
- image_sizes = [image_inputs[i].image_sizes for i in range(bs) if need_vision[i]]
- ########## Encode Image ########
- if pixel_values[0].ndim == 4:
- # llava-hd: BS, num_patch, C=3, H=336, W=336, num_patch obtained from process_images
- np.concatenate(pixel_values, axis=0)
- # ndim=4
- concat_images = torch.tensor(
- np.concatenate(pixel_values, axis=0),
- device=self.vision_tower.device,
- )
- image_features = self.encode_images(concat_images)
- split_sizes = [image.shape[0] for image in pixel_values]
- image_features = torch.split(image_features, split_sizes, dim=0)
- # hd image_features: BS, num_patch, 576, 4096
- else:
- # normal pixel: BS, C=3, H=336, W=336
- pixel_values = torch.tensor(np.array(pixel_values), device=self.vision_tower.device)
- image_features = self.encode_images(pixel_values)
- # image_features: BS, 576, 4096
- if self.mm_patch_merge_type.startswith("spatial"):
- new_image_features = []
- height = width = self.num_patches_per_side
- for image_idx, image_feature in enumerate(image_features):
- if modalities_list[image_idx] == "image":
- image_aspect_ratio = self.config.image_aspect_ratio # single image
- elif modalities_list[image_idx] == "multi-images" or modalities_list[image_idx] == "video":
- image_aspect_ratio = "pad" # multi image
- # image_aspect_ratio = (
- # "anyres" if len(image_sizes[image_idx]) == 1 else "pad"
- # )
- if (
- image_feature.shape[0] > 1
- and "anyres" in image_aspect_ratio
- and modalities_list[image_idx] == "image"
- ):
- base_image_feature = image_feature[0]
- image_feature = image_feature[1:]
- assert height * width == base_image_feature.shape[0]
- if "anyres_max" in image_aspect_ratio:
- matched_anyres_max_num_patches = re.match(r".*anyres_max_(\d+)", image_aspect_ratio)
- if matched_anyres_max_num_patches:
- max_num_patches = int(matched_anyres_max_num_patches.group(1))
- if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
- vision_tower_image_size = self.image_size
- try:
- num_patch_width, num_patch_height = get_anyres_image_grid_shape(
- image_sizes[image_idx][0],
- self.config.image_grid_pinpoints,
- vision_tower_image_size,
- )
- except Exception as e:
- print(f"Error: {e}")
- num_patch_width, num_patch_height = 2, 2
- image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
- else:
- image_feature = image_feature.view(2, 2, height, width, -1)
- if "unpad" in self.mm_patch_merge_type:
- unit = image_feature.shape[2]
- image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
- image_feature = image_feature.flatten(1, 2).flatten(2, 3)
- ### EDIT: remove `unpad_image`
- # image_feature = unpad_image(image_feature, image_sizes[image_idx][0])
- if "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
- c, h, w = image_feature.shape
- times = math.sqrt(h * w / (max_num_patches * unit**2))
- if times > 1.1:
- image_feature = image_feature[None]
- image_feature = nn.functional.interpolate(
- image_feature,
- [int(h // times), int(w // times)],
- mode="bilinear",
- )[0]
- image_feature = torch.cat(
- (
- image_feature,
- self.language_model.model.image_newline[:, None, None].expand(
- *image_feature.shape[:-1], 1
- ),
- ),
- dim=-1,
- )
- image_feature = image_feature.flatten(1, 2).transpose(0, 1)
- else:
- image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
- image_feature = image_feature.flatten(0, 3)
- image_feature = torch.cat((base_image_feature, image_feature), dim=0)
- image_feature = image_feature.unsqueeze(0)
- else:
- if modalities_list[image_idx] == "video": # video
- # 2x2 pooling
- num_of_frames = image_feature.shape[0]
- image_feature = image_feature.view(num_of_frames, height, width, -1)
- image_feature = image_feature.permute(0, 3, 1, 2).contiguous() # N, C, H, W
- height, weight = image_feature.shape[2:]
- scaled_shape = [
- math.ceil(height / 2),
- math.ceil(weight / 2),
- ]
- image_feature = nn.functional.interpolate(image_feature, size=scaled_shape, mode="bilinear")
- image_feature = image_feature.flatten(2).transpose(1, 2).contiguous() # N, C, H*W
- if "unpad" in self.mm_patch_merge_type:
- image_feature = torch.cat(
- (
- image_feature,
- # Expand to (bs, 1, hidden_dim) and concat at the end of the image tokens
- self.language_model.model.image_newline[None, None].expand(
- image_feature.shape[0],
- 1,
- image_feature.shape[-1],
- ),
- ),
- dim=1,
- )
- new_image_features.append(image_feature)
- image_features = new_image_features
- # Fill in the placeholder for the image
- extend_start_loc_cpu = forward_batch.extend_start_loc.cpu().numpy()
- extend_seq_lens = forward_batch.extend_seq_lens.cpu().numpy()
- prefix_lens_cpu = forward_batch.extend_prefix_lens_cpu
- pt = 0
- for i in range(bs):
- if not need_vision[i]:
- continue
- start_idx = extend_start_loc_cpu[i]
- seq_len = extend_seq_lens[i]
- prefix_len = prefix_lens_cpu[i]
- # Multiple images
- for image_idx, image_offset in enumerate(image_inputs[i].image_offsets):
- if image_offset + image_inputs[i].image_pad_len[image_idx] <= prefix_len:
- continue
- if image_offset >= prefix_len + seq_len:
- break
- tmp_image_feature = image_features[pt][image_idx]
- pad_len = tmp_image_feature.shape[0]
- input_offset = image_offset - prefix_len
- left_idx = start_idx + input_offset
- right_idx = left_idx + pad_len
- assert right_idx > start_idx
- if input_offset < 0:
- left_idx = start_idx
- tmp_image_feature = tmp_image_feature[-input_offset:]
- if right_idx > start_idx + seq_len:
- tmp_image_feature = tmp_image_feature[: start_idx + seq_len - right_idx]
- right_idx = start_idx + seq_len
- try:
- input_embeds[left_idx:right_idx] = tmp_image_feature
- except RuntimeError as e:
- print(f"RuntimeError in image encoding: {e}")
- print(f"{input_embeds.shape=}, {tmp_image_feature.shape=}")
- print(f"{start_idx=}, {image_offset=}, {prefix_len=}, {pad_len=}")
- pt += 1
- return self.language_model(input_ids, positions, forward_batch, input_embeds=input_embeds)
- elif forward_batch.forward_mode.is_decode():
- return self.language_model(input_ids, positions, forward_batch)
- else:
- raise ValueError(f"Unexpected forward mode: {forward_batch.forward_mode}")
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- projector_weights = {
- "model.mm_projector": "multi_modal_mlp",
- "model.vision_tower.vision_tower": "vision_tower",
- # Update the vision tower weights if we find them in the checkpoint (it may be finetuned).
- "model.image_newline": "language_model.model.image_newline",
- }
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in weights:
- if "projector" in name or "vision_tower" in name or "image_newline" in name:
- for weight_name, param_name in projector_weights.items():
- if weight_name in name:
- name = name.replace(weight_name, param_name)
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader", default_weight_loader)
- weight_loader(param, loaded_weight)
- else:
- self.language_model.load_weights([(name, loaded_weight)])
- @property
- def num_patches_per_side(self):
- return self.image_size // self.patch_size
- EntryClass = [Mineru2QwenForCausalLM]
|