magic_model.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import (
  12. _is_in,
  13. bbox_relative_pos,
  14. bbox_distance,
  15. _is_part_overlap,
  16. calculate_overlap_area_in_bbox1_area_ratio,
  17. )
  18. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  19. CAPATION_OVERLAP_AREA_RATIO = 0.6
  20. class MagicModel:
  21. """
  22. 每个函数没有得到元素的时候返回空list
  23. """
  24. def __fix_axis(self):
  25. for model_page_info in self.__model_list:
  26. need_remove_list = []
  27. page_no = model_page_info["page_info"]["page_no"]
  28. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  29. model_page_info, self.__docs[page_no]
  30. )
  31. layout_dets = model_page_info["layout_dets"]
  32. for layout_det in layout_dets:
  33. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  34. bbox = [
  35. int(x0 / horizontal_scale_ratio),
  36. int(y0 / vertical_scale_ratio),
  37. int(x1 / horizontal_scale_ratio),
  38. int(y1 / vertical_scale_ratio),
  39. ]
  40. layout_det["bbox"] = bbox
  41. # 删除高度或者宽度为0的spans
  42. if bbox[2] - bbox[0] == 0 or bbox[3] - bbox[1] == 0:
  43. need_remove_list.append(layout_det)
  44. for need_remove in need_remove_list:
  45. layout_dets.remove(need_remove)
  46. def __fix_by_confidence(self):
  47. for model_page_info in self.__model_list:
  48. need_remove_list = []
  49. layout_dets = model_page_info["layout_dets"]
  50. for layout_det in layout_dets:
  51. if layout_det["score"] <= 0.05:
  52. need_remove_list.append(layout_det)
  53. else:
  54. continue
  55. for need_remove in need_remove_list:
  56. layout_dets.remove(need_remove)
  57. def __init__(self, model_list: list, docs: fitz.Document):
  58. self.__model_list = model_list
  59. self.__docs = docs
  60. self.__fix_axis()
  61. self.__fix_by_confidence()
  62. def __reduct_overlap(self, bboxes):
  63. N = len(bboxes)
  64. keep = [True] * N
  65. for i in range(N):
  66. for j in range(N):
  67. if i == j:
  68. continue
  69. if _is_in(bboxes[i], bboxes[j]):
  70. keep[i] = False
  71. return [bboxes[i] for i in range(N) if keep[i]]
  72. def __tie_up_category_by_distance(
  73. self, page_no, subject_category_id, object_category_id
  74. ):
  75. """
  76. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  77. """
  78. ret = []
  79. MAX_DIS_OF_POINT = 10**9 + 7
  80. # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
  81. # 再求出筛选出的 subjects 和 object 的最短距离!
  82. def may_find_other_nearest_bbox(subject_idx, object_idx):
  83. ret = float("inf")
  84. x0 = min(all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0])
  85. y0 = min(all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1])
  86. x1 = max(all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2])
  87. y1 = max(all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3])
  88. object_area = abs(all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]) * abs(all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1])
  89. for i in range(len(all_bboxes)):
  90. if i == subject_idx or all_bboxes[i]["category_id"] != subject_category_id:
  91. continue
  92. if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(all_bboxes[i]["bbox"], [x0, y0, x1, y1]):
  93. i_area = abs(all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
  94. if i_area >= object_area:
  95. ret = min(float("inf"), dis[i][object_idx])
  96. return ret
  97. subjects = self.__reduct_overlap(
  98. list(
  99. map(
  100. lambda x: x["bbox"],
  101. filter(
  102. lambda x: x["category_id"] == subject_category_id,
  103. self.__model_list[page_no]["layout_dets"],
  104. ),
  105. )
  106. )
  107. )
  108. objects = self.__reduct_overlap(
  109. list(
  110. map(
  111. lambda x: x["bbox"],
  112. filter(
  113. lambda x: x["category_id"] == object_category_id,
  114. self.__model_list[page_no]["layout_dets"],
  115. ),
  116. )
  117. )
  118. )
  119. subject_object_relation_map = {}
  120. subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2) # get the distance !
  121. all_bboxes = []
  122. for v in subjects:
  123. all_bboxes.append({"category_id": subject_category_id, "bbox": v})
  124. for v in objects:
  125. all_bboxes.append({"category_id": object_category_id, "bbox": v})
  126. N = len(all_bboxes)
  127. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  128. for i in range(N):
  129. for j in range(i):
  130. if (
  131. all_bboxes[i]["category_id"] == subject_category_id
  132. and all_bboxes[j]["category_id"] == subject_category_id
  133. ):
  134. continue
  135. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  136. dis[j][i] = dis[i][j]
  137. used = set()
  138. for i in range(N):
  139. # 求第 i 个 subject 所关联的 object
  140. if all_bboxes[i]["category_id"] != subject_category_id:
  141. continue
  142. seen = set()
  143. candidates = []
  144. arr = []
  145. for j in range(N):
  146. pos_flag_count = sum(
  147. list(
  148. map(
  149. lambda x: 1 if x else 0,
  150. bbox_relative_pos(
  151. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  152. ),
  153. )
  154. )
  155. )
  156. if pos_flag_count > 1:
  157. continue
  158. if (
  159. all_bboxes[j]["category_id"] != object_category_id
  160. or j in used
  161. or dis[i][j] == MAX_DIS_OF_POINT
  162. ):
  163. continue
  164. arr.append((dis[i][j], j))
  165. arr.sort(key=lambda x: x[0])
  166. if len(arr) > 0:
  167. # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
  168. if may_find_other_nearest_bbox(i, j) >= arr[0][0]:
  169. candidates.append(arr[0][1])
  170. seen.add(arr[0][1])
  171. # 已经获取初始种子
  172. for j in set(candidates):
  173. tmp = []
  174. for k in range(i + 1, N):
  175. pos_flag_count = sum(
  176. list(
  177. map(
  178. lambda x: 1 if x else 0,
  179. bbox_relative_pos(
  180. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  181. ),
  182. )
  183. )
  184. )
  185. if pos_flag_count > 1:
  186. continue
  187. if (
  188. all_bboxes[k]["category_id"] != object_category_id
  189. or k in used
  190. or k in seen
  191. or dis[j][k] == MAX_DIS_OF_POINT
  192. ):
  193. continue
  194. is_nearest = True
  195. for l in range(i + 1, N):
  196. if l in (j, k) or l in used or l in seen:
  197. continue
  198. if not float_gt(dis[l][k], dis[j][k]):
  199. is_nearest = False
  200. break
  201. if is_nearest:
  202. tmp.append(k)
  203. seen.add(k)
  204. candidates = tmp
  205. if len(candidates) == 0:
  206. break
  207. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  208. # 先扩一下 bbox,
  209. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  210. all_bboxes[i]["bbox"][0]
  211. ]
  212. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  213. all_bboxes[i]["bbox"][1]
  214. ]
  215. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  216. all_bboxes[i]["bbox"][2]
  217. ]
  218. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  219. all_bboxes[i]["bbox"][3]
  220. ]
  221. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  222. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  223. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  224. caption_poses = [
  225. [ox0, oy0, ix0, oy1],
  226. [ox0, oy0, ox1, iy0],
  227. [ox0, iy1, ox1, oy1],
  228. [ix1, oy0, ox1, oy1],
  229. ]
  230. caption_areas = []
  231. for bbox in caption_poses:
  232. embed_arr = []
  233. for idx in seen:
  234. if calculate_overlap_area_in_bbox1_area_ratio(all_bboxes[idx]["bbox"], bbox) > CAPATION_OVERLAP_AREA_RATIO:
  235. embed_arr.append(idx)
  236. if len(embed_arr) > 0:
  237. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  238. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  239. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  240. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  241. caption_areas.append(
  242. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  243. )
  244. else:
  245. caption_areas.append(0)
  246. subject_object_relation_map[i] = []
  247. if max(caption_areas) > 0:
  248. max_area_idx = caption_areas.index(max(caption_areas))
  249. caption_bbox = caption_poses[max_area_idx]
  250. for j in seen:
  251. if calculate_overlap_area_in_bbox1_area_ratio(all_bboxes[j]["bbox"], caption_bbox) > CAPATION_OVERLAP_AREA_RATIO:
  252. used.add(j)
  253. subject_object_relation_map[i].append(j)
  254. for i in sorted(subject_object_relation_map.keys()):
  255. result = {
  256. "subject_body": all_bboxes[i]["bbox"],
  257. "all": all_bboxes[i]["bbox"],
  258. }
  259. if len(subject_object_relation_map[i]) > 0:
  260. x0 = min(
  261. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  262. )
  263. y0 = min(
  264. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  265. )
  266. x1 = max(
  267. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  268. )
  269. y1 = max(
  270. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  271. )
  272. result["object_body"] = [x0, y0, x1, y1]
  273. result["all"] = [
  274. min(x0, all_bboxes[i]["bbox"][0]),
  275. min(y0, all_bboxes[i]["bbox"][1]),
  276. max(x1, all_bboxes[i]["bbox"][2]),
  277. max(y1, all_bboxes[i]["bbox"][3]),
  278. ]
  279. ret.append(result)
  280. total_subject_object_dis = 0
  281. # 计算已经配对的 distance 距离
  282. for i in subject_object_relation_map.keys():
  283. for j in subject_object_relation_map[i]:
  284. total_subject_object_dis += bbox_distance(
  285. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  286. )
  287. # 计算未匹配的 subject 和 object 的距离(非精确版)
  288. with_caption_subject = set(
  289. [
  290. key
  291. for key in subject_object_relation_map.keys()
  292. if len(subject_object_relation_map[i]) > 0
  293. ]
  294. )
  295. for i in range(N):
  296. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  297. continue
  298. candidates = []
  299. for j in range(N):
  300. if (
  301. all_bboxes[j]["category_id"] != subject_category_id
  302. or j in with_caption_subject
  303. ):
  304. continue
  305. candidates.append((dis[i][j], j))
  306. if len(candidates) > 0:
  307. candidates.sort(key=lambda x: x[0])
  308. total_subject_object_dis += candidates[0][1]
  309. with_caption_subject.add(j)
  310. return ret, total_subject_object_dis
  311. def get_imgs(self, page_no: int): # @许瑞
  312. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  313. return [
  314. {
  315. "bbox": record["all"],
  316. "img_body_bbox": record["subject_body"],
  317. "img_caption_bbox": record.get("object_body", None),
  318. }
  319. for record in records
  320. ]
  321. def get_tables(
  322. self, page_no: int
  323. ) -> list: # 3个坐标, caption, table主体,table-note
  324. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  325. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  326. ret = []
  327. N, M = len(with_captions), len(with_footnotes)
  328. assert N == M
  329. for i in range(N):
  330. record = {
  331. "table_caption_bbox": with_captions[i].get("object_body", None),
  332. "table_body_bbox": with_captions[i]["subject_body"],
  333. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  334. }
  335. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  336. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  337. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  338. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  339. record["bbox"] = [x0, y0, x1, y1]
  340. ret.append(record)
  341. return ret
  342. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  343. inline_equations = self.__get_blocks_by_type(
  344. ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
  345. )
  346. interline_equations = self.__get_blocks_by_type(
  347. ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
  348. )
  349. interline_equations_blocks = self.__get_blocks_by_type(
  350. ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
  351. )
  352. return inline_equations, interline_equations, interline_equations_blocks
  353. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  354. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  355. return blocks
  356. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  357. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  358. return blocks
  359. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  360. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  361. return blocks
  362. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  363. text_spans = []
  364. model_page_info = self.__model_list[page_no]
  365. layout_dets = model_page_info["layout_dets"]
  366. for layout_det in layout_dets:
  367. if layout_det["category_id"] == "15":
  368. span = {
  369. "bbox": layout_det["bbox"],
  370. "content": layout_det["text"],
  371. }
  372. text_spans.append(span)
  373. return text_spans
  374. def get_all_spans(self, page_no: int) -> list:
  375. all_spans = []
  376. model_page_info = self.__model_list[page_no]
  377. layout_dets = model_page_info["layout_dets"]
  378. allow_category_id_list = [3, 5, 13, 14, 15]
  379. """当成span拼接的"""
  380. # 3: 'image', # 图片
  381. # 5: 'table', # 表格
  382. # 13: 'inline_equation', # 行内公式
  383. # 14: 'interline_equation', # 行间公式
  384. # 15: 'text', # ocr识别文本
  385. for layout_det in layout_dets:
  386. category_id = layout_det["category_id"]
  387. if category_id in allow_category_id_list:
  388. span = {"bbox": layout_det["bbox"]}
  389. if category_id == 3:
  390. span["type"] = ContentType.Image
  391. elif category_id == 5:
  392. span["type"] = ContentType.Table
  393. elif category_id == 13:
  394. span["content"] = layout_det["latex"]
  395. span["type"] = ContentType.InlineEquation
  396. elif category_id == 14:
  397. span["content"] = layout_det["latex"]
  398. span["type"] = ContentType.InterlineEquation
  399. elif category_id == 15:
  400. span["content"] = layout_det["text"]
  401. span["type"] = ContentType.Text
  402. all_spans.append(span)
  403. return all_spans
  404. def get_page_size(self, page_no: int): # 获取页面宽高
  405. # 获取当前页的page对象
  406. page = self.__docs[page_no]
  407. # 获取当前页的宽高
  408. page_w = page.rect.width
  409. page_h = page.rect.height
  410. return page_w, page_h
  411. def __get_blocks_by_type(
  412. self, type: int, page_no: int, extra_col: list[str] = []
  413. ) -> list:
  414. blocks = []
  415. for page_dict in self.__model_list:
  416. layout_dets = page_dict.get("layout_dets", [])
  417. page_info = page_dict.get("page_info", {})
  418. page_number = page_info.get("page_no", -1)
  419. if page_no != page_number:
  420. continue
  421. for item in layout_dets:
  422. category_id = item.get("category_id", -1)
  423. bbox = item.get("bbox", None)
  424. if category_id == type:
  425. block = {"bbox": bbox}
  426. for col in extra_col:
  427. block[col] = item.get(col, None)
  428. blocks.append(block)
  429. return blocks
  430. if __name__ == "__main__":
  431. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  432. if 0:
  433. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  434. model_file_path = r"linshixuqiu\19983-00_new.json"
  435. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  436. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  437. model_list = json.loads(model_json_txt)
  438. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  439. img_bucket_path = "imgs"
  440. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  441. pdf_docs = fitz.open("pdf", pdf_bytes)
  442. magic_model = MagicModel(model_list, pdf_docs)
  443. if 1:
  444. model_list = json.loads(
  445. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  446. )
  447. pdf_bytes = drw.read(
  448. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  449. )
  450. pdf_docs = fitz.open("pdf", pdf_bytes)
  451. magic_model = MagicModel(model_list, pdf_docs)
  452. for i in range(7):
  453. print(magic_model.get_imgs(i))