| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771 |
- import enum
- from magic_pdf.config.model_block_type import ModelBlockTypeEnum
- from magic_pdf.config.ocr_content_type import CategoryId, ContentType
- from magic_pdf.data.dataset import Dataset
- from magic_pdf.libs.boxbase import (_is_in, bbox_distance, bbox_relative_pos,
- calculate_iou)
- from magic_pdf.libs.coordinate_transform import get_scale_ratio
- from magic_pdf.pre_proc.remove_bbox_overlap import _remove_overlap_between_bbox
- CAPATION_OVERLAP_AREA_RATIO = 0.6
- MERGE_BOX_OVERLAP_AREA_RATIO = 1.1
- class PosRelationEnum(enum.Enum):
- LEFT = 'left'
- RIGHT = 'right'
- UP = 'up'
- BOTTOM = 'bottom'
- ALL = 'all'
- class MagicModel:
- """每个函数没有得到元素的时候返回空list."""
- def __fix_axis(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- page_no = model_page_info['page_info']['page_no']
- horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
- model_page_info, self.__docs.get_page(page_no)
- )
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det.get('bbox') is not None:
- # 兼容直接输出bbox的模型数据,如paddle
- x0, y0, x1, y1 = layout_det['bbox']
- else:
- # 兼容直接输出poly的模型数据,如xxx
- x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
- bbox = [
- int(x0 / horizontal_scale_ratio),
- int(y0 / vertical_scale_ratio),
- int(x1 / horizontal_scale_ratio),
- int(y1 / vertical_scale_ratio),
- ]
- layout_det['bbox'] = bbox
- # 删除高度或者宽度小于等于0的spans
- if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
- need_remove_list.append(layout_det)
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_low_confidence(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det['score'] <= 0.05:
- need_remove_list.append(layout_det)
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_high_iou_and_low_confidence(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- layout_dets = model_page_info['layout_dets']
- for layout_det1 in layout_dets:
- for layout_det2 in layout_dets:
- if layout_det1 == layout_det2:
- continue
- if layout_det1['category_id'] in [
- 0,
- 1,
- 2,
- 3,
- 4,
- 5,
- 6,
- 7,
- 8,
- 9,
- ] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
- if (
- calculate_iou(layout_det1['bbox'], layout_det2['bbox'])
- > 0.9
- ):
- if layout_det1['score'] < layout_det2['score']:
- layout_det_need_remove = layout_det1
- else:
- layout_det_need_remove = layout_det2
- if layout_det_need_remove not in need_remove_list:
- need_remove_list.append(layout_det_need_remove)
- else:
- continue
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __init__(self, model_list: list, docs: Dataset):
- self.__model_list = model_list
- self.__docs = docs
- """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
- self.__fix_axis()
- """删除置信度特别低的模型数据(<0.05),提高质量"""
- self.__fix_by_remove_low_confidence()
- """删除高iou(>0.9)数据中置信度较低的那个"""
- self.__fix_by_remove_high_iou_and_low_confidence()
- self.__fix_footnote()
- def _bbox_distance(self, bbox1, bbox2):
- left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
- flags = [left, right, bottom, top]
- count = sum([1 if v else 0 for v in flags])
- if count > 1:
- return float('inf')
- if left or right:
- l1 = bbox1[3] - bbox1[1]
- l2 = bbox2[3] - bbox2[1]
- else:
- l1 = bbox1[2] - bbox1[0]
- l2 = bbox2[2] - bbox2[0]
- if l2 > l1 and (l2 - l1) / l1 > 0.3:
- return float('inf')
- return bbox_distance(bbox1, bbox2)
- def __fix_footnote(self):
- # 3: figure, 5: table, 7: footnote
- for model_page_info in self.__model_list:
- footnotes = []
- figures = []
- tables = []
- for obj in model_page_info['layout_dets']:
- if obj['category_id'] == 7:
- footnotes.append(obj)
- elif obj['category_id'] == 3:
- figures.append(obj)
- elif obj['category_id'] == 5:
- tables.append(obj)
- if len(footnotes) * len(figures) == 0:
- continue
- dis_figure_footnote = {}
- dis_table_footnote = {}
- for i in range(len(footnotes)):
- for j in range(len(figures)):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- footnotes[i]['bbox'], figures[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- dis_figure_footnote[i] = min(
- self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
- dis_figure_footnote.get(i, float('inf')),
- )
- for i in range(len(footnotes)):
- for j in range(len(tables)):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- footnotes[i]['bbox'], tables[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- dis_table_footnote[i] = min(
- self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
- dis_table_footnote.get(i, float('inf')),
- )
- for i in range(len(footnotes)):
- if i not in dis_figure_footnote:
- continue
- if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
- footnotes[i]['category_id'] = CategoryId.ImageFootnote
- def __reduct_overlap(self, bboxes):
- N = len(bboxes)
- keep = [True] * N
- for i in range(N):
- for j in range(N):
- if i == j:
- continue
- if _is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
- keep[i] = False
- return [bboxes[i] for i in range(N) if keep[i]]
- def __tie_up_category_by_distance_v2(
- self,
- page_no: int,
- subject_category_id: int,
- object_category_id: int,
- priority_pos: PosRelationEnum,
- ):
- """_summary_
- Args:
- page_no (int): _description_
- subject_category_id (int): _description_
- object_category_id (int): _description_
- priority_pos (PosRelationEnum): _description_
- Returns:
- _type_: _description_
- """
- AXIS_MULPLICITY = 0.5
- subjects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == subject_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- objects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == object_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- M = len(objects)
- subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
- objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
- sub_obj_map_h = {i: [] for i in range(len(subjects))}
- dis_by_directions = {
- 'top': [[-1, float('inf')]] * M,
- 'bottom': [[-1, float('inf')]] * M,
- 'left': [[-1, float('inf')]] * M,
- 'right': [[-1, float('inf')]] * M,
- }
- for i, obj in enumerate(objects):
- l_x_axis, l_y_axis = (
- obj['bbox'][2] - obj['bbox'][0],
- obj['bbox'][3] - obj['bbox'][1],
- )
- axis_unit = min(l_x_axis, l_y_axis)
- for j, sub in enumerate(subjects):
- bbox1, bbox2, _ = _remove_overlap_between_bbox(
- objects[i]['bbox'], subjects[j]['bbox']
- )
- left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
- flags = [left, right, bottom, top]
- if sum([1 if v else 0 for v in flags]) > 1:
- continue
- if left:
- if dis_by_directions['left'][i][1] > bbox_distance(
- obj['bbox'], sub['bbox']
- ):
- dis_by_directions['left'][i] = [
- j,
- bbox_distance(obj['bbox'], sub['bbox']),
- ]
- if right:
- if dis_by_directions['right'][i][1] > bbox_distance(
- obj['bbox'], sub['bbox']
- ):
- dis_by_directions['right'][i] = [
- j,
- bbox_distance(obj['bbox'], sub['bbox']),
- ]
- if bottom:
- if dis_by_directions['bottom'][i][1] > bbox_distance(
- obj['bbox'], sub['bbox']
- ):
- dis_by_directions['bottom'][i] = [
- j,
- bbox_distance(obj['bbox'], sub['bbox']),
- ]
- if top:
- if dis_by_directions['top'][i][1] > bbox_distance(
- obj['bbox'], sub['bbox']
- ):
- dis_by_directions['top'][i] = [
- j,
- bbox_distance(obj['bbox'], sub['bbox']),
- ]
- if (
- dis_by_directions['top'][i][1] != float('inf')
- and dis_by_directions['bottom'][i][1] != float('inf')
- and priority_pos in (PosRelationEnum.BOTTOM, PosRelationEnum.UP)
- ):
- RATIO = 3
- if (
- abs(
- dis_by_directions['top'][i][1]
- - dis_by_directions['bottom'][i][1]
- )
- < RATIO * axis_unit
- ):
- if priority_pos == PosRelationEnum.BOTTOM:
- sub_obj_map_h[dis_by_directions['bottom'][i][0]].append(i)
- else:
- sub_obj_map_h[dis_by_directions['top'][i][0]].append(i)
- continue
- if dis_by_directions['left'][i][1] != float('inf') or dis_by_directions[
- 'right'
- ][i][1] != float('inf'):
- if dis_by_directions['left'][i][1] != float(
- 'inf'
- ) and dis_by_directions['right'][i][1] != float('inf'):
- if AXIS_MULPLICITY * axis_unit >= abs(
- dis_by_directions['left'][i][1]
- - dis_by_directions['right'][i][1]
- ):
- left_sub_bbox = subjects[dis_by_directions['left'][i][0]][
- 'bbox'
- ]
- right_sub_bbox = subjects[dis_by_directions['right'][i][0]][
- 'bbox'
- ]
- left_sub_bbox_y_axis = left_sub_bbox[3] - left_sub_bbox[1]
- right_sub_bbox_y_axis = right_sub_bbox[3] - right_sub_bbox[1]
- if (
- abs(left_sub_bbox_y_axis - l_y_axis)
- + dis_by_directions['left'][i][0]
- > abs(right_sub_bbox_y_axis - l_y_axis)
- + dis_by_directions['right'][i][0]
- ):
- left_or_right = dis_by_directions['right'][i]
- else:
- left_or_right = dis_by_directions['left'][i]
- else:
- left_or_right = dis_by_directions['left'][i]
- if left_or_right[1] > dis_by_directions['right'][i][1]:
- left_or_right = dis_by_directions['right'][i]
- else:
- left_or_right = dis_by_directions['left'][i]
- if left_or_right[1] == float('inf'):
- left_or_right = dis_by_directions['right'][i]
- else:
- left_or_right = [-1, float('inf')]
- if dis_by_directions['top'][i][1] != float('inf') or dis_by_directions[
- 'bottom'
- ][i][1] != float('inf'):
- if dis_by_directions['top'][i][1] != float('inf') and dis_by_directions[
- 'bottom'
- ][i][1] != float('inf'):
- if AXIS_MULPLICITY * axis_unit >= abs(
- dis_by_directions['top'][i][1]
- - dis_by_directions['bottom'][i][1]
- ):
- top_bottom = subjects[dis_by_directions['bottom'][i][0]]['bbox']
- bottom_top = subjects[dis_by_directions['top'][i][0]]['bbox']
- top_bottom_x_axis = top_bottom[2] - top_bottom[0]
- bottom_top_x_axis = bottom_top[2] - bottom_top[0]
- if (
- abs(top_bottom_x_axis - l_x_axis)
- + dis_by_directions['bottom'][i][1]
- > abs(bottom_top_x_axis - l_x_axis)
- + dis_by_directions['top'][i][1]
- ):
- top_or_bottom = dis_by_directions['top'][i]
- else:
- top_or_bottom = dis_by_directions['bottom'][i]
- else:
- top_or_bottom = dis_by_directions['top'][i]
- if top_or_bottom[1] > dis_by_directions['bottom'][i][1]:
- top_or_bottom = dis_by_directions['bottom'][i]
- else:
- top_or_bottom = dis_by_directions['top'][i]
- if top_or_bottom[1] == float('inf'):
- top_or_bottom = dis_by_directions['bottom'][i]
- else:
- top_or_bottom = [-1, float('inf')]
- if left_or_right[1] != float('inf') or top_or_bottom[1] != float('inf'):
- if left_or_right[1] != float('inf') and top_or_bottom[1] != float(
- 'inf'
- ):
- if AXIS_MULPLICITY * axis_unit >= abs(
- left_or_right[1] - top_or_bottom[1]
- ):
- y_axis_bbox = subjects[left_or_right[0]]['bbox']
- x_axis_bbox = subjects[top_or_bottom[0]]['bbox']
- if (
- abs((x_axis_bbox[2] - x_axis_bbox[0]) - l_x_axis) / l_x_axis
- > abs((y_axis_bbox[3] - y_axis_bbox[1]) - l_y_axis)
- / l_y_axis
- ):
- sub_obj_map_h[left_or_right[0]].append(i)
- else:
- sub_obj_map_h[top_or_bottom[0]].append(i)
- else:
- if left_or_right[1] > top_or_bottom[1]:
- sub_obj_map_h[top_or_bottom[0]].append(i)
- else:
- sub_obj_map_h[left_or_right[0]].append(i)
- else:
- if left_or_right[1] != float('inf'):
- sub_obj_map_h[left_or_right[0]].append(i)
- else:
- sub_obj_map_h[top_or_bottom[0]].append(i)
- ret = []
- for i in sub_obj_map_h.keys():
- ret.append(
- {
- 'sub_bbox': {
- 'bbox': subjects[i]['bbox'],
- 'score': subjects[i]['score'],
- },
- 'obj_bboxes': [
- {'score': objects[j]['score'], 'bbox': objects[j]['bbox']}
- for j in sub_obj_map_h[i]
- ],
- 'sub_idx': i,
- }
- )
- return ret
- def __tie_up_category_by_distance_v3(
- self,
- page_no: int,
- subject_category_id: int,
- object_category_id: int,
- priority_pos: PosRelationEnum,
- ):
- subjects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == subject_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- objects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == object_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- ret = []
- N, M = len(subjects), len(objects)
- subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
- objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
- OBJ_IDX_OFFSET = 10000
- SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
- all_boxes_with_idx = [(i, SUB_BIT_KIND, sub['bbox'][0], sub['bbox'][1]) for i, sub in enumerate(subjects)] + [(i + OBJ_IDX_OFFSET , OBJ_BIT_KIND, obj['bbox'][0], obj['bbox'][1]) for i, obj in enumerate(objects)]
- seen_idx = set()
- seen_sub_idx = set()
- while N > len(seen_sub_idx):
- candidates = []
- for idx, kind, x0, y0 in all_boxes_with_idx:
- if idx in seen_idx:
- continue
- candidates.append((idx, kind, x0, y0))
- if len(candidates) == 0:
- break
- left_x = min([v[2] for v in candidates])
- top_y = min([v[3] for v in candidates])
- candidates.sort(key=lambda x: (x[2]-left_x) ** 2 + (x[3] - top_y) ** 2)
- fst_idx, fst_kind, left_x, top_y = candidates[0]
- candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y)**2)
- nxt = None
- for i in range(1, len(candidates)):
- if candidates[i][1] ^ fst_kind == 1:
- nxt = candidates[i]
- break
- if nxt is None:
- break
- if fst_kind == SUB_BIT_KIND:
- sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
- else:
- sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
- pair_dis = bbox_distance(subjects[sub_idx]['bbox'], objects[obj_idx]['bbox'])
- nearest_dis = float('inf')
- for i in range(N):
- if i in seen_idx or i == sub_idx:continue
- nearest_dis = min(nearest_dis, bbox_distance(subjects[i]['bbox'], objects[obj_idx]['bbox']))
- if pair_dis >= 3*nearest_dis:
- seen_idx.add(sub_idx)
- continue
- seen_idx.add(sub_idx)
- seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
- seen_sub_idx.add(sub_idx)
- ret.append(
- {
- 'sub_bbox': {
- 'bbox': subjects[sub_idx]['bbox'],
- 'score': subjects[sub_idx]['score'],
- },
- 'obj_bboxes': [
- {'score': objects[obj_idx]['score'], 'bbox': objects[obj_idx]['bbox']}
- ],
- 'sub_idx': sub_idx,
- }
- )
- for i in range(len(objects)):
- j = i + OBJ_IDX_OFFSET
- if j in seen_idx:
- continue
- seen_idx.add(j)
- nearest_dis, nearest_sub_idx = float('inf'), -1
- for k in range(len(subjects)):
- dis = bbox_distance(objects[i]['bbox'], subjects[k]['bbox'])
- if dis < nearest_dis:
- nearest_dis = dis
- nearest_sub_idx = k
- for k in range(len(subjects)):
- if k != nearest_sub_idx: continue
- if k in seen_sub_idx:
- for kk in range(len(ret)):
- if ret[kk]['sub_idx'] == k:
- ret[kk]['obj_bboxes'].append({'score': objects[i]['score'], 'bbox': objects[i]['bbox']})
- break
- else:
- ret.append(
- {
- 'sub_bbox': {
- 'bbox': subjects[k]['bbox'],
- 'score': subjects[k]['score'],
- },
- 'obj_bboxes': [
- {'score': objects[i]['score'], 'bbox': objects[i]['bbox']}
- ],
- 'sub_idx': k,
- }
- )
- seen_sub_idx.add(k)
- seen_idx.add(k)
- for i in range(len(subjects)):
- if i in seen_sub_idx:
- continue
- ret.append(
- {
- 'sub_bbox': {
- 'bbox': subjects[i]['bbox'],
- 'score': subjects[i]['score'],
- },
- 'obj_bboxes': [],
- 'sub_idx': i,
- }
- )
- return ret
- def get_imgs_v2(self, page_no: int):
- with_captions = self.__tie_up_category_by_distance_v3(
- page_no, 3, 4, PosRelationEnum.BOTTOM
- )
- with_footnotes = self.__tie_up_category_by_distance_v3(
- page_no, 3, CategoryId.ImageFootnote, PosRelationEnum.ALL
- )
- ret = []
- for v in with_captions:
- record = {
- 'image_body': v['sub_bbox'],
- 'image_caption_list': v['obj_bboxes'],
- }
- filter_idx = v['sub_idx']
- d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
- record['image_footnote_list'] = d['obj_bboxes']
- ret.append(record)
- return ret
- def get_tables_v2(self, page_no: int) -> list:
- with_captions = self.__tie_up_category_by_distance_v3(
- page_no, 5, 6, PosRelationEnum.UP
- )
- with_footnotes = self.__tie_up_category_by_distance_v3(
- page_no, 5, 7, PosRelationEnum.ALL
- )
- ret = []
- for v in with_captions:
- record = {
- 'table_body': v['sub_bbox'],
- 'table_caption_list': v['obj_bboxes'],
- }
- filter_idx = v['sub_idx']
- d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
- record['table_footnote_list'] = d['obj_bboxes']
- ret.append(record)
- return ret
- def get_imgs(self, page_no: int):
- return self.get_imgs_v2(page_no)
- def get_tables(
- self, page_no: int
- ) -> list: # 3个坐标, caption, table主体,table-note
- return self.get_tables_v2(page_no)
- def get_equations(self, page_no: int) -> list: # 有坐标,也有字
- inline_equations = self.__get_blocks_by_type(
- ModelBlockTypeEnum.EMBEDDING.value, page_no, ['latex']
- )
- interline_equations = self.__get_blocks_by_type(
- ModelBlockTypeEnum.ISOLATED.value, page_no, ['latex']
- )
- interline_equations_blocks = self.__get_blocks_by_type(
- ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
- )
- return inline_equations, interline_equations, interline_equations_blocks
- def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
- return blocks
- def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
- return blocks
- def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
- return blocks
- def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
- text_spans = []
- model_page_info = self.__model_list[page_no]
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det['category_id'] == '15':
- span = {
- 'bbox': layout_det['bbox'],
- 'content': layout_det['text'],
- }
- text_spans.append(span)
- return text_spans
- def get_all_spans(self, page_no: int) -> list:
- def remove_duplicate_spans(spans):
- new_spans = []
- for span in spans:
- if not any(span == existing_span for existing_span in new_spans):
- new_spans.append(span)
- return new_spans
- all_spans = []
- model_page_info = self.__model_list[page_no]
- layout_dets = model_page_info['layout_dets']
- allow_category_id_list = [3, 5, 13, 14, 15]
- """当成span拼接的"""
- # 3: 'image', # 图片
- # 5: 'table', # 表格
- # 13: 'inline_equation', # 行内公式
- # 14: 'interline_equation', # 行间公式
- # 15: 'text', # ocr识别文本
- for layout_det in layout_dets:
- category_id = layout_det['category_id']
- if category_id in allow_category_id_list:
- span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
- if category_id == 3:
- span['type'] = ContentType.Image
- elif category_id == 5:
- # 获取table模型结果
- latex = layout_det.get('latex', None)
- html = layout_det.get('html', None)
- if latex:
- span['latex'] = latex
- elif html:
- span['html'] = html
- span['type'] = ContentType.Table
- elif category_id == 13:
- span['content'] = layout_det['latex']
- span['type'] = ContentType.InlineEquation
- elif category_id == 14:
- span['content'] = layout_det['latex']
- span['type'] = ContentType.InterlineEquation
- elif category_id == 15:
- span['content'] = layout_det['text']
- span['type'] = ContentType.Text
- all_spans.append(span)
- return remove_duplicate_spans(all_spans)
- def get_page_size(self, page_no: int): # 获取页面宽高
- # 获取当前页的page对象
- page = self.__docs.get_page(page_no).get_page_info()
- # 获取当前页的宽高
- page_w = page.w
- page_h = page.h
- return page_w, page_h
- def __get_blocks_by_type(
- self, type: int, page_no: int, extra_col: list[str] = []
- ) -> list:
- blocks = []
- for page_dict in self.__model_list:
- layout_dets = page_dict.get('layout_dets', [])
- page_info = page_dict.get('page_info', {})
- page_number = page_info.get('page_no', -1)
- if page_no != page_number:
- continue
- for item in layout_dets:
- category_id = item.get('category_id', -1)
- bbox = item.get('bbox', None)
- if category_id == type:
- block = {
- 'bbox': bbox,
- 'score': item.get('score'),
- }
- for col in extra_col:
- block[col] = item.get(col, None)
- blocks.append(block)
- return blocks
- def get_model_list(self, page_no):
- return self.__model_list[page_no]
|