magic_model.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import (
  12. _is_in,
  13. bbox_relative_pos,
  14. bbox_distance,
  15. _is_part_overlap,
  16. calculate_overlap_area_in_bbox1_area_ratio,
  17. )
  18. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  19. CAPATION_OVERLAP_AREA_RATIO = 0.6
  20. class MagicModel:
  21. """
  22. 每个函数没有得到元素的时候返回空list
  23. """
  24. def __fix_axis(self):
  25. for model_page_info in self.__model_list:
  26. need_remove_list = []
  27. page_no = model_page_info["page_info"]["page_no"]
  28. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  29. model_page_info, self.__docs[page_no]
  30. )
  31. layout_dets = model_page_info["layout_dets"]
  32. for layout_det in layout_dets:
  33. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  34. bbox = [
  35. int(x0 / horizontal_scale_ratio),
  36. int(y0 / vertical_scale_ratio),
  37. int(x1 / horizontal_scale_ratio),
  38. int(y1 / vertical_scale_ratio),
  39. ]
  40. layout_det["bbox"] = bbox
  41. # 删除高度或者宽度小于等于0的spans
  42. if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
  43. need_remove_list.append(layout_det)
  44. for need_remove in need_remove_list:
  45. layout_dets.remove(need_remove)
  46. def __fix_by_confidence(self):
  47. for model_page_info in self.__model_list:
  48. need_remove_list = []
  49. layout_dets = model_page_info["layout_dets"]
  50. for layout_det in layout_dets:
  51. if layout_det["score"] <= 0.05:
  52. need_remove_list.append(layout_det)
  53. else:
  54. continue
  55. for need_remove in need_remove_list:
  56. layout_dets.remove(need_remove)
  57. def __init__(self, model_list: list, docs: fitz.Document):
  58. self.__model_list = model_list
  59. self.__docs = docs
  60. self.__fix_axis()
  61. self.__fix_by_confidence()
  62. def __reduct_overlap(self, bboxes):
  63. N = len(bboxes)
  64. keep = [True] * N
  65. for i in range(N):
  66. for j in range(N):
  67. if i == j:
  68. continue
  69. if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
  70. keep[i] = False
  71. return [bboxes[i] for i in range(N) if keep[i]]
  72. def __tie_up_category_by_distance(
  73. self, page_no, subject_category_id, object_category_id
  74. ):
  75. """
  76. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  77. """
  78. ret = []
  79. MAX_DIS_OF_POINT = 10**9 + 7
  80. def expand_bbox(bbox1, bbox2):
  81. x0 = min(bbox1[0], bbox2[0])
  82. y0 = min(bbox1[1], bbox2[1])
  83. x1 = max(bbox1[2], bbox2[2])
  84. y1 = max(bbox1[3], bbox2[3])
  85. return [x0, y0, x1, y1]
  86. def get_bbox_area(bbox):
  87. return abs(bbox[2] - bbox[0]) * abs(bbox[3] - bbox[1])
  88. # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
  89. # 再求出筛选出的 subjects 和 object 的最短距离!
  90. def may_find_other_nearest_bbox(subject_idx, object_idx):
  91. ret = float("inf")
  92. x0 = min(
  93. all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
  94. )
  95. y0 = min(
  96. all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
  97. )
  98. x1 = max(
  99. all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
  100. )
  101. y1 = max(
  102. all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
  103. )
  104. object_area = abs(
  105. all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
  106. ) * abs(
  107. all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
  108. )
  109. for i in range(len(all_bboxes)):
  110. if (
  111. i == subject_idx
  112. or all_bboxes[i]["category_id"] != subject_category_id
  113. ):
  114. continue
  115. if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
  116. all_bboxes[i]["bbox"], [x0, y0, x1, y1]
  117. ):
  118. i_area = abs(
  119. all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
  120. ) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
  121. if i_area >= object_area:
  122. ret = min(float("inf"), dis[i][object_idx])
  123. return ret
  124. subjects = self.__reduct_overlap(
  125. list(
  126. map(
  127. lambda x: {"bbox": x["bbox"], "score": x["score"]},
  128. filter(
  129. lambda x: x["category_id"] == subject_category_id,
  130. self.__model_list[page_no]["layout_dets"],
  131. ),
  132. )
  133. )
  134. )
  135. objects = self.__reduct_overlap(
  136. list(
  137. map(
  138. lambda x: {"bbox": x["bbox"], "score": x["score"]},
  139. filter(
  140. lambda x: x["category_id"] == object_category_id,
  141. self.__model_list[page_no]["layout_dets"],
  142. ),
  143. )
  144. )
  145. )
  146. subject_object_relation_map = {}
  147. subjects.sort(
  148. key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
  149. ) # get the distance !
  150. all_bboxes = []
  151. for v in subjects:
  152. all_bboxes.append(
  153. {
  154. "category_id": subject_category_id,
  155. "bbox": v["bbox"],
  156. "score": v["score"],
  157. }
  158. )
  159. for v in objects:
  160. all_bboxes.append(
  161. {
  162. "category_id": object_category_id,
  163. "bbox": v["bbox"],
  164. "score": v["score"],
  165. }
  166. )
  167. N = len(all_bboxes)
  168. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  169. for i in range(N):
  170. for j in range(i):
  171. if (
  172. all_bboxes[i]["category_id"] == subject_category_id
  173. and all_bboxes[j]["category_id"] == subject_category_id
  174. ):
  175. continue
  176. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  177. dis[j][i] = dis[i][j]
  178. used = set()
  179. for i in range(N):
  180. # 求第 i 个 subject 所关联的 object
  181. if all_bboxes[i]["category_id"] != subject_category_id:
  182. continue
  183. seen = set()
  184. candidates = []
  185. arr = []
  186. for j in range(N):
  187. pos_flag_count = sum(
  188. list(
  189. map(
  190. lambda x: 1 if x else 0,
  191. bbox_relative_pos(
  192. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  193. ),
  194. )
  195. )
  196. )
  197. if pos_flag_count > 1:
  198. continue
  199. if (
  200. all_bboxes[j]["category_id"] != object_category_id
  201. or j in used
  202. or dis[i][j] == MAX_DIS_OF_POINT
  203. ):
  204. continue
  205. arr.append((dis[i][j], j))
  206. arr.sort(key=lambda x: x[0])
  207. if len(arr) > 0:
  208. # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
  209. if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
  210. candidates.append(arr[0][1])
  211. seen.add(arr[0][1])
  212. # 已经获取初始种子
  213. for j in set(candidates):
  214. tmp = []
  215. for k in range(i + 1, N):
  216. pos_flag_count = sum(
  217. list(
  218. map(
  219. lambda x: 1 if x else 0,
  220. bbox_relative_pos(
  221. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  222. ),
  223. )
  224. )
  225. )
  226. if pos_flag_count > 1:
  227. continue
  228. if (
  229. all_bboxes[k]["category_id"] != object_category_id
  230. or k in used
  231. or k in seen
  232. or dis[j][k] == MAX_DIS_OF_POINT
  233. ):
  234. continue
  235. is_nearest = True
  236. for l in range(i + 1, N):
  237. if l in (j, k) or l in used or l in seen:
  238. continue
  239. if not float_gt(dis[l][k], dis[j][k]):
  240. is_nearest = False
  241. break
  242. if is_nearest:
  243. tmp.append(k)
  244. seen.add(k)
  245. candidates = tmp
  246. if len(candidates) == 0:
  247. break
  248. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  249. # 先扩一下 bbox,
  250. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  251. all_bboxes[i]["bbox"][0]
  252. ]
  253. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  254. all_bboxes[i]["bbox"][1]
  255. ]
  256. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  257. all_bboxes[i]["bbox"][2]
  258. ]
  259. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  260. all_bboxes[i]["bbox"][3]
  261. ]
  262. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  263. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  264. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  265. caption_poses = [
  266. [ox0, oy0, ix0, oy1],
  267. [ox0, oy0, ox1, iy0],
  268. [ox0, iy1, ox1, oy1],
  269. [ix1, oy0, ox1, oy1],
  270. ]
  271. caption_areas = []
  272. for bbox in caption_poses:
  273. embed_arr = []
  274. for idx in seen:
  275. if (
  276. calculate_overlap_area_in_bbox1_area_ratio(
  277. all_bboxes[idx]["bbox"], bbox
  278. )
  279. > CAPATION_OVERLAP_AREA_RATIO
  280. ):
  281. embed_arr.append(idx)
  282. if len(embed_arr) > 0:
  283. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  284. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  285. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  286. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  287. caption_areas.append(
  288. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  289. )
  290. else:
  291. caption_areas.append(0)
  292. subject_object_relation_map[i] = []
  293. if max(caption_areas) > 0:
  294. max_area_idx = caption_areas.index(max(caption_areas))
  295. caption_bbox = caption_poses[max_area_idx]
  296. for j in seen:
  297. if (
  298. calculate_overlap_area_in_bbox1_area_ratio(
  299. all_bboxes[j]["bbox"], caption_bbox
  300. )
  301. > CAPATION_OVERLAP_AREA_RATIO
  302. ):
  303. used.add(j)
  304. subject_object_relation_map[i].append(j)
  305. for i in sorted(subject_object_relation_map.keys()):
  306. result = {
  307. "subject_body": all_bboxes[i]["bbox"],
  308. "all": all_bboxes[i]["bbox"],
  309. "score": all_bboxes[i]["score"],
  310. }
  311. if len(subject_object_relation_map[i]) > 0:
  312. x0 = min(
  313. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  314. )
  315. y0 = min(
  316. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  317. )
  318. x1 = max(
  319. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  320. )
  321. y1 = max(
  322. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  323. )
  324. result["object_body"] = [x0, y0, x1, y1]
  325. result["all"] = [
  326. min(x0, all_bboxes[i]["bbox"][0]),
  327. min(y0, all_bboxes[i]["bbox"][1]),
  328. max(x1, all_bboxes[i]["bbox"][2]),
  329. max(y1, all_bboxes[i]["bbox"][3]),
  330. ]
  331. ret.append(result)
  332. total_subject_object_dis = 0
  333. # 计算已经配对的 distance 距离
  334. for i in subject_object_relation_map.keys():
  335. for j in subject_object_relation_map[i]:
  336. total_subject_object_dis += bbox_distance(
  337. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  338. )
  339. # 计算未匹配的 subject 和 object 的距离(非精确版)
  340. with_caption_subject = set(
  341. [
  342. key
  343. for key in subject_object_relation_map.keys()
  344. if len(subject_object_relation_map[i]) > 0
  345. ]
  346. )
  347. for i in range(N):
  348. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  349. continue
  350. candidates = []
  351. for j in range(N):
  352. if (
  353. all_bboxes[j]["category_id"] != subject_category_id
  354. or j in with_caption_subject
  355. ):
  356. continue
  357. candidates.append((dis[i][j], j))
  358. if len(candidates) > 0:
  359. candidates.sort(key=lambda x: x[0])
  360. total_subject_object_dis += candidates[0][1]
  361. with_caption_subject.add(j)
  362. return ret, total_subject_object_dis
  363. def get_imgs(self, page_no: int): # @许瑞
  364. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  365. return [
  366. {
  367. "bbox": record["all"],
  368. "img_body_bbox": record["subject_body"],
  369. "img_caption_bbox": record.get("object_body", None),
  370. "score": record["score"],
  371. }
  372. for record in records
  373. ]
  374. def get_tables(
  375. self, page_no: int
  376. ) -> list: # 3个坐标, caption, table主体,table-note
  377. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  378. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  379. ret = []
  380. N, M = len(with_captions), len(with_footnotes)
  381. assert N == M
  382. for i in range(N):
  383. record = {
  384. "score": with_captions[i]["score"],
  385. "table_caption_bbox": with_captions[i].get("object_body", None),
  386. "table_body_bbox": with_captions[i]["subject_body"],
  387. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  388. }
  389. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  390. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  391. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  392. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  393. record["bbox"] = [x0, y0, x1, y1]
  394. ret.append(record)
  395. return ret
  396. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  397. inline_equations = self.__get_blocks_by_type(
  398. ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
  399. )
  400. interline_equations = self.__get_blocks_by_type(
  401. ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
  402. )
  403. interline_equations_blocks = self.__get_blocks_by_type(
  404. ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
  405. )
  406. return inline_equations, interline_equations, interline_equations_blocks
  407. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  408. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  409. return blocks
  410. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  411. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  412. return blocks
  413. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  414. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  415. return blocks
  416. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  417. text_spans = []
  418. model_page_info = self.__model_list[page_no]
  419. layout_dets = model_page_info["layout_dets"]
  420. for layout_det in layout_dets:
  421. if layout_det["category_id"] == "15":
  422. span = {
  423. "bbox": layout_det["bbox"],
  424. "content": layout_det["text"],
  425. }
  426. text_spans.append(span)
  427. return text_spans
  428. def get_all_spans(self, page_no: int) -> list:
  429. def remove_duplicate_spans(spans):
  430. new_spans = []
  431. for span in spans:
  432. if not any(span == existing_span for existing_span in new_spans):
  433. new_spans.append(span)
  434. return new_spans
  435. all_spans = []
  436. model_page_info = self.__model_list[page_no]
  437. layout_dets = model_page_info["layout_dets"]
  438. allow_category_id_list = [3, 5, 13, 14, 15]
  439. """当成span拼接的"""
  440. # 3: 'image', # 图片
  441. # 5: 'table', # 表格
  442. # 13: 'inline_equation', # 行内公式
  443. # 14: 'interline_equation', # 行间公式
  444. # 15: 'text', # ocr识别文本
  445. for layout_det in layout_dets:
  446. category_id = layout_det["category_id"]
  447. if category_id in allow_category_id_list:
  448. span = {
  449. "bbox": layout_det["bbox"],
  450. "score": layout_det["score"]
  451. }
  452. if category_id == 3:
  453. span["type"] = ContentType.Image
  454. elif category_id == 5:
  455. span["type"] = ContentType.Table
  456. elif category_id == 13:
  457. span["content"] = layout_det["latex"]
  458. span["type"] = ContentType.InlineEquation
  459. elif category_id == 14:
  460. span["content"] = layout_det["latex"]
  461. span["type"] = ContentType.InterlineEquation
  462. elif category_id == 15:
  463. span["content"] = layout_det["text"]
  464. span["type"] = ContentType.Text
  465. all_spans.append(span)
  466. return remove_duplicate_spans(all_spans)
  467. def get_page_size(self, page_no: int): # 获取页面宽高
  468. # 获取当前页的page对象
  469. page = self.__docs[page_no]
  470. # 获取当前页的宽高
  471. page_w = page.rect.width
  472. page_h = page.rect.height
  473. return page_w, page_h
  474. def __get_blocks_by_type(
  475. self, type: int, page_no: int, extra_col: list[str] = []
  476. ) -> list:
  477. blocks = []
  478. for page_dict in self.__model_list:
  479. layout_dets = page_dict.get("layout_dets", [])
  480. page_info = page_dict.get("page_info", {})
  481. page_number = page_info.get("page_no", -1)
  482. if page_no != page_number:
  483. continue
  484. for item in layout_dets:
  485. category_id = item.get("category_id", -1)
  486. bbox = item.get("bbox", None)
  487. if category_id == type:
  488. block = {
  489. "bbox": bbox,
  490. "score": item.get("score"),
  491. }
  492. for col in extra_col:
  493. block[col] = item.get(col, None)
  494. blocks.append(block)
  495. return blocks
  496. def get_model_list(self, page_no):
  497. return self.__model_list[page_no]
  498. if __name__ == "__main__":
  499. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  500. if 0:
  501. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  502. model_file_path = r"linshixuqiu\19983-00_new.json"
  503. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  504. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  505. model_list = json.loads(model_json_txt)
  506. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  507. img_bucket_path = "imgs"
  508. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  509. pdf_docs = fitz.open("pdf", pdf_bytes)
  510. magic_model = MagicModel(model_list, pdf_docs)
  511. if 1:
  512. model_list = json.loads(
  513. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  514. )
  515. pdf_bytes = drw.read(
  516. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  517. )
  518. pdf_docs = fitz.open("pdf", pdf_bytes)
  519. magic_model = MagicModel(model_list, pdf_docs)
  520. for i in range(7):
  521. print(magic_model.get_imgs(i))