| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- from typing import List
- import cv2
- import numpy as np
- def projection_by_bboxes(boxes: np.array, axis: int) -> np.ndarray:
- """
- 通过一组 bbox 获得投影直方图,最后以 per-pixel 形式输出
- Args:
- boxes: [N, 4]
- axis: 0-x坐标向水平方向投影, 1-y坐标向垂直方向投影
- Returns:
- 1D 投影直方图,长度为投影方向坐标的最大值(我们不需要图片的实际边长,因为只是要找文本框的间隔)
- """
- assert axis in [0, 1]
- length = np.max(boxes[:, axis::2])
- res = np.zeros(length, dtype=int)
- # TODO: how to remove for loop?
- for start, end in boxes[:, axis::2]:
- res[start:end] += 1
- return res
- # from: https://dothinking.github.io/2021-06-19-%E9%80%92%E5%BD%92%E6%8A%95%E5%BD%B1%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95/#:~:text=%E9%80%92%E5%BD%92%E6%8A%95%E5%BD%B1%E5%88%86%E5%89%B2%EF%BC%88Recursive%20XY,%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%88%92%E5%88%86%E6%AE%B5%E8%90%BD%E3%80%81%E8%A1%8C%E3%80%82
- def split_projection_profile(arr_values: np.array, min_value: float, min_gap: float):
- """Split projection profile:
- ```
- ┌──┐
- arr_values │ │ ┌─┐───
- ┌──┐ │ │ │ │ |
- │ │ │ │ ┌───┐ │ │min_value
- │ │<- min_gap ->│ │ │ │ │ │ |
- ────┴──┴─────────────┴──┴─┴───┴─┴─┴─┴───
- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- ```
- Args:
- arr_values (np.array): 1-d array representing the projection profile.
- min_value (float): Ignore the profile if `arr_value` is less than `min_value`.
- min_gap (float): Ignore the gap if less than this value.
- Returns:
- tuple: Start indexes and end indexes of split groups.
- """
- # all indexes with projection height exceeding the threshold
- arr_index = np.where(arr_values > min_value)[0]
- if not len(arr_index):
- return
- # find zero intervals between adjacent projections
- # | | ||
- # ||||<- zero-interval -> |||||
- arr_diff = arr_index[1:] - arr_index[0:-1]
- arr_diff_index = np.where(arr_diff > min_gap)[0]
- arr_zero_intvl_start = arr_index[arr_diff_index]
- arr_zero_intvl_end = arr_index[arr_diff_index + 1]
- # convert to index of projection range:
- # the start index of zero interval is the end index of projection
- arr_start = np.insert(arr_zero_intvl_end, 0, arr_index[0])
- arr_end = np.append(arr_zero_intvl_start, arr_index[-1])
- arr_end += 1 # end index will be excluded as index slice
- return arr_start, arr_end
- def recursive_xy_cut(boxes: np.ndarray, indices: List[int], res: List[int]):
- """
- Args:
- boxes: (N, 4)
- indices: 递归过程中始终表示 box 在原始数据中的索引
- res: 保存输出结果
- """
- # 向 y 轴投影
- assert len(boxes) == len(indices)
- _indices = boxes[:, 1].argsort()
- y_sorted_boxes = boxes[_indices]
- y_sorted_indices = indices[_indices]
- # debug_vis(y_sorted_boxes, y_sorted_indices)
- y_projection = projection_by_bboxes(boxes=y_sorted_boxes, axis=1)
- pos_y = split_projection_profile(y_projection, 0, 1)
- if not pos_y:
- return
- arr_y0, arr_y1 = pos_y
- for r0, r1 in zip(arr_y0, arr_y1):
- # [r0, r1] 表示按照水平切分,有 bbox 的区域,对这些区域会再进行垂直切分
- _indices = (r0 <= y_sorted_boxes[:, 1]) & (y_sorted_boxes[:, 1] < r1)
- y_sorted_boxes_chunk = y_sorted_boxes[_indices]
- y_sorted_indices_chunk = y_sorted_indices[_indices]
- _indices = y_sorted_boxes_chunk[:, 0].argsort()
- x_sorted_boxes_chunk = y_sorted_boxes_chunk[_indices]
- x_sorted_indices_chunk = y_sorted_indices_chunk[_indices]
- # 往 x 方向投影
- x_projection = projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0)
- pos_x = split_projection_profile(x_projection, 0, 1)
- if not pos_x:
- continue
- arr_x0, arr_x1 = pos_x
- if len(arr_x0) == 1:
- # x 方向无法切分
- res.extend(x_sorted_indices_chunk)
- continue
- # x 方向上能分开,继续递归调用
- for c0, c1 in zip(arr_x0, arr_x1):
- _indices = (c0 <= x_sorted_boxes_chunk[:, 0]) & (
- x_sorted_boxes_chunk[:, 0] < c1
- )
- recursive_xy_cut(
- x_sorted_boxes_chunk[_indices], x_sorted_indices_chunk[_indices], res
- )
- def points_to_bbox(points):
- assert len(points) == 8
- # [x1,y1,x2,y2,x3,y3,x4,y4]
- left = min(points[::2])
- right = max(points[::2])
- top = min(points[1::2])
- bottom = max(points[1::2])
- left = max(left, 0)
- top = max(top, 0)
- right = max(right, 0)
- bottom = max(bottom, 0)
- return [left, top, right, bottom]
- def bbox2points(bbox):
- left, top, right, bottom = bbox
- return [left, top, right, top, right, bottom, left, bottom]
- def vis_polygon(img, points, thickness=2, color=None):
- br2bl_color = color
- tl2tr_color = color
- tr2br_color = color
- bl2tl_color = color
- cv2.line(
- img,
- (points[0][0], points[0][1]),
- (points[1][0], points[1][1]),
- color=tl2tr_color,
- thickness=thickness,
- )
- cv2.line(
- img,
- (points[1][0], points[1][1]),
- (points[2][0], points[2][1]),
- color=tr2br_color,
- thickness=thickness,
- )
- cv2.line(
- img,
- (points[2][0], points[2][1]),
- (points[3][0], points[3][1]),
- color=br2bl_color,
- thickness=thickness,
- )
- cv2.line(
- img,
- (points[3][0], points[3][1]),
- (points[0][0], points[0][1]),
- color=bl2tl_color,
- thickness=thickness,
- )
- return img
- def vis_points(
- img: np.ndarray, points, texts: List[str] = None, color=(0, 200, 0)
- ) -> np.ndarray:
- """
- Args:
- img:
- points: [N, 8] 8: x1,y1,x2,y2,x3,y3,x3,y4
- texts:
- color:
- Returns:
- """
- points = np.array(points)
- if texts is not None:
- assert len(texts) == points.shape[0]
- for i, _points in enumerate(points):
- vis_polygon(img, _points.reshape(-1, 2), thickness=2, color=color)
- bbox = points_to_bbox(_points)
- left, top, right, bottom = bbox
- cx = (left + right) // 2
- cy = (top + bottom) // 2
- txt = texts[i]
- font = cv2.FONT_HERSHEY_SIMPLEX
- cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
- img = cv2.rectangle(
- img,
- (cx - 5 * len(txt), cy - cat_size[1] - 5),
- (cx - 5 * len(txt) + cat_size[0], cy - 5),
- color,
- -1,
- )
- img = cv2.putText(
- img,
- txt,
- (cx - 5 * len(txt), cy - 5),
- font,
- 0.5,
- (255, 255, 255),
- thickness=1,
- lineType=cv2.LINE_AA,
- )
- return img
- def vis_polygons_with_index(image, points):
- texts = [str(i) for i in range(len(points))]
- res_img = vis_points(image.copy(), points, texts)
- return res_img
|