|
|
@@ -0,0 +1,155 @@
|
|
|
+# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+from typing import Any, Union, Dict, List, Tuple
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+from ....utils.func_register import FuncRegister
|
|
|
+from ....modules.general_recognition.model_list import MODELS
|
|
|
+from ...common.batch_sampler import ImageBatchSampler
|
|
|
+from ...common.reader import ReadImage
|
|
|
+from ..common import (
|
|
|
+ Resize,
|
|
|
+ ResizeByShort,
|
|
|
+ Normalize,
|
|
|
+ ToCHWImage,
|
|
|
+ ToBatch,
|
|
|
+ StaticInfer,
|
|
|
+)
|
|
|
+from ..base import BasicPredictor
|
|
|
+from .processors import NormalizeFeatures
|
|
|
+from .result import IdentityResult
|
|
|
+
|
|
|
+
|
|
|
+class ImageFeaturePredictor(BasicPredictor):
|
|
|
+ """ImageFeaturePredictor that inherits from BasicPredictor."""
|
|
|
+
|
|
|
+ entities = MODELS
|
|
|
+
|
|
|
+ _FUNC_MAP = {}
|
|
|
+ register = FuncRegister(_FUNC_MAP)
|
|
|
+
|
|
|
+ def __init__(self, *args: List, **kwargs: Dict) -> None:
|
|
|
+ """Initializes ClasPredictor.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ *args: Arbitrary positional arguments passed to the superclass.
|
|
|
+ **kwargs: Arbitrary keyword arguments passed to the superclass.
|
|
|
+ """
|
|
|
+ super().__init__(*args, **kwargs)
|
|
|
+ self.preprocessors, self.infer, self.postprocessors = self._build()
|
|
|
+
|
|
|
+ def _build_batch_sampler(self) -> ImageBatchSampler:
|
|
|
+ """Builds and returns an ImageBatchSampler instance.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ ImageBatchSampler: An instance of ImageBatchSampler.
|
|
|
+ """
|
|
|
+ return ImageBatchSampler()
|
|
|
+
|
|
|
+ def _get_result_class(self) -> type:
|
|
|
+ """Returns the result class, IdentityResult.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ type: The IdentityResult class.
|
|
|
+ """
|
|
|
+ return IdentityResult
|
|
|
+
|
|
|
+ def _build(self) -> Tuple:
|
|
|
+ """Build the preprocessors, inference engine, and postprocessors based on the configuration.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ tuple: A tuple containing the preprocessors, inference engine, and postprocessors.
|
|
|
+ """
|
|
|
+ preprocessors = {"Read": ReadImage(format="RGB")}
|
|
|
+ for cfg in self.config["PreProcess"]["transform_ops"]:
|
|
|
+ tf_key = list(cfg.keys())[0]
|
|
|
+ func = self._FUNC_MAP[tf_key]
|
|
|
+ args = cfg.get(tf_key, {})
|
|
|
+ if args is not None and "return_numpy" in args:
|
|
|
+ args.pop("return_numpy")
|
|
|
+ name, op = func(self, **args) if args else func(self)
|
|
|
+ preprocessors[name] = op
|
|
|
+ preprocessors["ToBatch"] = ToBatch()
|
|
|
+
|
|
|
+ infer = StaticInfer(
|
|
|
+ model_dir=self.model_dir,
|
|
|
+ model_prefix=self.MODEL_FILE_PREFIX,
|
|
|
+ option=self.pp_option,
|
|
|
+ )
|
|
|
+
|
|
|
+ postprocessors = {}
|
|
|
+ for key in self.config["PostProcess"]:
|
|
|
+ func = self._FUNC_MAP.get(key)
|
|
|
+ args = self.config["PostProcess"].get(key, {})
|
|
|
+ name, op = func(self, **args) if args else func(self)
|
|
|
+ postprocessors[name] = op
|
|
|
+ return preprocessors, infer, postprocessors
|
|
|
+
|
|
|
+ def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]:
|
|
|
+ """
|
|
|
+ Process a batch of data through the preprocessing, inference, and postprocessing.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
|
|
|
+ """
|
|
|
+ batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data)
|
|
|
+ batch_imgs = self.preprocessors["Resize"](imgs=batch_raw_imgs)
|
|
|
+ batch_imgs = self.preprocessors["Normalize"](imgs=batch_imgs)
|
|
|
+ batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs)
|
|
|
+ x = self.preprocessors["ToBatch"](imgs=batch_imgs)
|
|
|
+ batch_preds = self.infer(x=x)
|
|
|
+ features = self.postprocessors["NormalizeFeatures"](batch_preds)
|
|
|
+ return {
|
|
|
+ "input_path": batch_data,
|
|
|
+ "input_img": batch_raw_imgs,
|
|
|
+ }
|
|
|
+
|
|
|
+ @register("ResizeImage")
|
|
|
+ # TODO(gaotingquan): backend & interpolation
|
|
|
+ def build_resize(
|
|
|
+ self, resize_short=None, size=None, backend="cv2", interpolation="LINEAR"
|
|
|
+ ):
|
|
|
+ assert resize_short or size
|
|
|
+ if resize_short:
|
|
|
+ op = ResizeByShort(
|
|
|
+ target_short_edge=resize_short, size_divisor=None, interp="LINEAR"
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ op = Resize(target_size=size)
|
|
|
+ return "Resize", op
|
|
|
+
|
|
|
+ @register("NormalizeImage")
|
|
|
+ def build_normalize(
|
|
|
+ self,
|
|
|
+ mean=[0.485, 0.456, 0.406],
|
|
|
+ std=[0.229, 0.224, 0.225],
|
|
|
+ scale=1 / 255,
|
|
|
+ order="",
|
|
|
+ channel_num=3,
|
|
|
+ ):
|
|
|
+ assert channel_num == 3
|
|
|
+ assert order == "hwc"
|
|
|
+ return "Normalize", Normalize(scale=scale, mean=mean, std=std)
|
|
|
+
|
|
|
+ @register("ToCHWImage")
|
|
|
+ def build_to_chw(self):
|
|
|
+ return "ToCHW", ToCHWImage()
|
|
|
+
|
|
|
+ @register("NormalizeFeatures")
|
|
|
+ def build_normalize_features(self):
|
|
|
+ return "NormalizeFeatures", NormalizeFeatures()
|