|
|
@@ -1,56 +0,0 @@
|
|
|
-import os
|
|
|
-# 选择使用0号卡
|
|
|
-os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
|
-
|
|
|
-import paddle.fluid as fluid
|
|
|
-from paddlex.cls import transforms
|
|
|
-import paddlex as pdx
|
|
|
-
|
|
|
-# 下载和解压蔬菜分类数据集
|
|
|
-veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
|
|
|
-pdx.utils.download_and_decompress(veg_dataset, path='./')
|
|
|
-
|
|
|
-# 定义训练和验证时的transforms
|
|
|
-# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/cls_transforms.html#composedclstransforms
|
|
|
-train_transforms = transforms.ComposedClsTransforms(mode='train', crop_size=[224, 224])
|
|
|
-eval_transforms = transforms.ComposedClsTransforms(mode='eval', crop_size=[224, 224])
|
|
|
-
|
|
|
-# 定义训练和验证所用的数据集
|
|
|
-# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/classification.html#imagenet
|
|
|
-train_dataset = pdx.datasets.ImageNet(
|
|
|
- data_dir='vegetables_cls',
|
|
|
- file_list='vegetables_cls/train_list.txt',
|
|
|
- label_list='vegetables_cls/labels.txt',
|
|
|
- transforms=train_transforms,
|
|
|
- shuffle=True)
|
|
|
-eval_dataset = pdx.datasets.ImageNet(
|
|
|
- data_dir='vegetables_cls',
|
|
|
- file_list='vegetables_cls/val_list.txt',
|
|
|
- label_list='vegetables_cls/labels.txt',
|
|
|
- transforms=eval_transforms)
|
|
|
-
|
|
|
-# PaddleX支持自定义构建优化器
|
|
|
-step_each_epoch = train_dataset.num_samples // 32
|
|
|
-learning_rate = fluid.layers.cosine_decay(
|
|
|
- learning_rate=0.025, step_each_epoch=step_each_epoch, epochs=10)
|
|
|
-optimizer = fluid.optimizer.Momentum(
|
|
|
- learning_rate=learning_rate,
|
|
|
- momentum=0.9,
|
|
|
- regularization=fluid.regularizer.L2Decay(4e-5))
|
|
|
-
|
|
|
-# 初始化模型,并进行训练
|
|
|
-# 可使用VisualDL查看训练指标
|
|
|
-# VisualDL启动方式: visualdl --logdir output/resnet50/vdl_log --port 8001
|
|
|
-# 浏览器打开 https://0.0.0.0:8001即可
|
|
|
-# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
|
|
|
-
|
|
|
-# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/classification.html#resnet50
|
|
|
-model = pdx.cls.ResNet50(num_classes=len(train_dataset.labels))
|
|
|
-model.train(
|
|
|
- num_epochs=10,
|
|
|
- train_dataset=train_dataset,
|
|
|
- train_batch_size=32,
|
|
|
- eval_dataset=eval_dataset,
|
|
|
- optimizer=optimizer,
|
|
|
- save_dir='output/resnet50',
|
|
|
- use_vdl=True)
|