|
|
@@ -37,22 +37,52 @@ comments: true
|
|
|
## 三、快速集成
|
|
|
> ❗ 在快速集成前,请先安装 PaddleX 的 wheel 包,详细请参考 [PaddleX本地安装教程](../../../installation/installation.md)
|
|
|
|
|
|
-完成 wheel 包的安装后,几行代码即可完成目标检测模块的推理,可以任意切换该模块下的模型,您也可以将3D多模态融合检测模块中的模型推理集成到您的项目中。运行以下代码前,请您下载[示例输入](https://paddle-model-ecology.bj.bcebos.com/paddlex/det_3d/demo_det_3d/nuscenes_infos_val.pkl)到本地。
|
|
|
+完成 wheel 包的安装后,几行代码即可完成目标检测模块的推理,可以任意切换该模块下的模型,您也可以将3D多模态融合检测模块中的模型推理集成到您的项目中。运行以下代码前,请您下载[示例输入](https://paddle-model-ecology.bj.bcebos.com/paddlex/det_3d/demo_det_3d/nuscenes_demo_infer.tar)到本地。
|
|
|
|
|
|
```python
|
|
|
-from paddlex import create_model
|
|
|
-model = create_model(model_name="BEVFusion")
|
|
|
-output = model.predict(input="nuscenes_infos_val.pkl", batch_size=1)
|
|
|
+from paddlex import create_pipeline
|
|
|
+
|
|
|
+pipeline = create_pipeline(pipeline="3d_bev_detection")
|
|
|
+output = pipeline.predict("nuscenes_demo_infer.tar")
|
|
|
+
|
|
|
for res in output:
|
|
|
- res.print()
|
|
|
- res.save_to_json(save_path="./output/res.json")
|
|
|
+ res.print() ## 打印预测的结构化输出
|
|
|
+ res.save_to_json("./output/") ## 保存结果到json文件
|
|
|
```
|
|
|
|
|
|
运行后,得到的结果为:
|
|
|
```bash
|
|
|
{"res":
|
|
|
{
|
|
|
- "input_path": "./data/nuscenes/samples/LIDAR_TOP/n008-2018-08-01-15-16-36-0400__LIDAR_TOP__1533151616947490.pcd.bin", "input_img_paths": ["./data/nuscenes/samples/CAM_FRONT_LEFT/n008-2018-08-01-15-16-36-0400__CAM_FRONT_LEFT__1533151616904806.jpg", "./data/nuscenes/samples/CAM_FRONT/n008-2018-08-01-15-16-36-0400__CAM_FRONT__1533151616912404.jpg", "./data/nuscenes/samples/CAM_FRONT_RIGHT/n008-2018-08-01-15-16-36-0400__CAM_FRONT_RIGHT__1533151616920482.jpg", "./data/nuscenes/samples/CAM_BACK_RIGHT/n008-2018-08-01-15-16-36-0400__CAM_BACK_RIGHT__1533151616928113.jpg", "./data/nuscenes/samples/CAM_BACK/n008-2018-08-01-15-16-36-0400__CAM_BACK__1533151616937558.jpg", "./data/nuscenes/samples/CAM_BACK_LEFT/n008-2018-08-01-15-16-36-0400__CAM_BACK_LEFT__1533151616947405.jpg"], "sample_id": "cc57c1ea80fe46a7abddfdb15654c872", "boxes_3d": [[-8.913962364196777, 13.30993366241455, -1.7353310585021973, 1.9886571168899536, 4.886075019836426, 1.877254605293274, 6.317165374755859, -0.00018131558317691088, 0.022375036031007767]], "labels_3d": [0], "scores_3d": [0.9951273202896118]
|
|
|
+ 'input_path': 'samples/LIDAR_TOP/n015-2018-10-08-15-36-50+0800__LIDAR_TOP__1538984253447765.pcd.bin',
|
|
|
+ 'sample_id': 'b4ff30109dd14c89b24789dc5713cf8c',
|
|
|
+ 'input_img_paths': [
|
|
|
+ 'samples/CAM_FRONT_LEFT/n015-2018-10-08-15-36-50+0800__CAM_FRONT_LEFT__1538984253404844.jpg',
|
|
|
+ 'samples/CAM_FRONT/n015-2018-10-08-15-36-50+0800__CAM_FRONT__1538984253412460.jpg',
|
|
|
+ 'samples/CAM_FRONT_RIGHT/n015-2018-10-08-15-36-50+0800__CAM_FRONT_RIGHT__1538984253420339.jpg',
|
|
|
+ 'samples/CAM_BACK_RIGHT/n015-2018-10-08-15-36-50+0800__CAM_BACK_RIGHT__1538984253427893.jpg',
|
|
|
+ 'samples/CAM_BACK/n015-2018-10-08-15-36-50+0800__CAM_BACK__1538984253437525.jpg',
|
|
|
+ 'samples/CAM_BACK_LEFT/n015-2018-10-08-15-36-50+0800__CAM_BACK_LEFT__1538984253447423.jpg'
|
|
|
+ ]
|
|
|
+ "boxes_3d": [
|
|
|
+ [
|
|
|
+ 14.5425386428833,
|
|
|
+ 22.142045974731445,
|
|
|
+ -1.2903141975402832,
|
|
|
+ 1.8441576957702637,
|
|
|
+ 4.433370113372803,
|
|
|
+ 1.7367216348648071,
|
|
|
+ 6.367165565490723,
|
|
|
+ 0.0036598597653210163,
|
|
|
+ -0.013568558730185032
|
|
|
+ ]
|
|
|
+ ],
|
|
|
+ "labels_3d": [
|
|
|
+ 0
|
|
|
+ ],
|
|
|
+ "scores_3d": [
|
|
|
+ 0.9920279383659363
|
|
|
+ ]
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
@@ -277,7 +307,7 @@ python main.py -c paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml \
|
|
|
"histogram": "check_dataset/histogram.png"
|
|
|
},
|
|
|
"dataset_path": "/workspace/bevfusion/Paddle3D/data/nuscenes",
|
|
|
- "show_type": "path for images and lidar",
|
|
|
+ "show_type": "txt",
|
|
|
"dataset_type": "NuscenesMMDataset"
|
|
|
}
|
|
|
</code></pre>
|