|
|
@@ -21,7 +21,7 @@ from .imgaug_support import execute_imgaug
|
|
|
from .cls_transforms import ClsTransform
|
|
|
from .det_transforms import DetTransform
|
|
|
from .seg_transforms import SegTransform
|
|
|
-import paddlex
|
|
|
+import paddlex as pdx
|
|
|
from paddlex.cv.models.utils.visualize import get_color_map_list
|
|
|
|
|
|
|
|
|
@@ -164,10 +164,10 @@ def det_compose(im, im_info=None, label_info=None, transforms=None, vdl_writer=N
|
|
|
im = outputs[0]
|
|
|
vdl_im = im
|
|
|
if vdl_writer is not None:
|
|
|
- if isinstance(op, paddlex.cv.transforms.det_transforms.ResizeByShort):
|
|
|
+ if isinstance(op, pdx.cv.transforms.det_transforms.ResizeByShort):
|
|
|
scale = outputs[1]['im_resize_info'][2]
|
|
|
bboxes = bboxes * scale
|
|
|
- elif isinstance(op, paddlex.cv.transforms.det_transforms.Resize):
|
|
|
+ elif isinstance(op, pdx.cv.transforms.det_transforms.Resize):
|
|
|
h = outputs[1]['image_shape'][0]
|
|
|
w = outputs[1]['image_shape'][1]
|
|
|
target_size = op.target_size
|
|
|
@@ -183,7 +183,7 @@ def det_compose(im, im_info=None, label_info=None, transforms=None, vdl_writer=N
|
|
|
bboxes[:,3] = bboxes[:,3] * h_scale
|
|
|
else:
|
|
|
bboxes = outputs[2]['gt_bbox']
|
|
|
- if not isinstance(op, paddlex.cv.transforms.det_transforms.RandomHorizontalFlip):
|
|
|
+ if not isinstance(op, pdx.cv.transforms.det_transforms.RandomHorizontalFlip):
|
|
|
for i in range(bboxes.shape[0]):
|
|
|
bbox = bboxes[i]
|
|
|
cname = labels[outputs[2]['gt_class'][i][0]-1]
|
|
|
@@ -194,7 +194,7 @@ def det_compose(im, im_info=None, label_info=None, transforms=None, vdl_writer=N
|
|
|
int(bbox[3]),
|
|
|
cname,
|
|
|
catid2color[outputs[2]['gt_class'][i][0]-1])
|
|
|
- if isinstance(op, paddlex.cv.transforms.det_transforms.Normalize):
|
|
|
+ if isinstance(op, pdx.cv.transforms.det_transforms.Normalize):
|
|
|
vdl_im = im
|
|
|
else:
|
|
|
im = execute_imgaug(op, im)
|