|
|
@@ -38,7 +38,7 @@ result = pipeline.predict(
|
|
|
{'input_path': "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"}
|
|
|
)
|
|
|
print(result["cls_result"])
|
|
|
-```
|
|
|
+```
|
|
|
</details>
|
|
|
|
|
|
### 2.2 目标检测产线
|
|
|
@@ -71,8 +71,8 @@ from paddlex import PaddleInferenceOption
|
|
|
model_name = "RT-DETR-L"
|
|
|
output_base = Path("output")
|
|
|
|
|
|
-output_dir = output_base / model_name
|
|
|
-pipeline = DetPipeline(model_name, output_dir=output_dir, kernel_option=PaddleInferenceOption())
|
|
|
+output = output_base / model_name
|
|
|
+pipeline = DetPipeline(model_name, output=output, kernel_option=PaddleInferenceOption())
|
|
|
result = pipeline.predict(
|
|
|
{"input_path": "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"})
|
|
|
print(result["boxes"])
|
|
|
@@ -111,8 +111,8 @@ from paddlex import PaddleInferenceOption
|
|
|
|
|
|
model_name = "PP-LiteSeg-T",
|
|
|
output_base = Path("output")
|
|
|
-output_dir = output_base / model_name
|
|
|
-pipeline = SegPipeline(model_name, output_dir=output_dir, kernel_option=PaddleInferenceOption())
|
|
|
+output = output_base / model_name
|
|
|
+pipeline = SegPipeline(model_name, output=output, kernel_option=PaddleInferenceOption())
|
|
|
result = pipeline.predict(
|
|
|
{"input_path": "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"}
|
|
|
)
|
|
|
@@ -152,8 +152,8 @@ from paddlex import PaddleInferenceOption
|
|
|
model_name = "Mask-RT-DETR-L"
|
|
|
output_base = Path("output")
|
|
|
|
|
|
-output_dir = output_base / model_name
|
|
|
-pipeline = DetPipeline(model_name, output_dir=output_dir, kernel_option=PaddleInferenceOption())
|
|
|
+output = output_base / model_name
|
|
|
+pipeline = DetPipeline(model_name, output=output, kernel_option=PaddleInferenceOption())
|
|
|
result = pipeline.predict(
|
|
|
{"input_path": "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_instance_segmentation_004.png"})
|
|
|
print(result["boxes"])
|